brack I

생명 시스템의 구성

- △ 생물의 특성
 - 1 생물의 특성
 - 2 생물과 비생물
- ③ 생명과학의 특성과 생명 시스템의 구성 단계
 - 1 생명과학의 특성
 - 2 생명 시스템의 구성 단계
- 동pecial 통합과학 연계 수능 기출 문제
- 생명활동과 에너지
 - 1 세포의 생명활동
 - 2 에너지의 전환과 이용
- 통합과학 연계 수능 기출 문제
- ① 기관계의 통합적 작용과 대사성 질환
 - 1 소화, 호흡, 순환, 배설
 - 2 기관계의 통합적 작용
 - 3 대사성 질환

- 생태계의 구조와 기능
 - 1 생태계의 구조
 - 2 물질순환과 에너지흐름
- 통합과학 연계 수능 기출 문제
- **(** 개체군
 - 1 개체군
 - 2 개체군 내 상호작용
- € 군집
 - 1 군집
 - 2 군집의 천이
 - 3 군집 내 상호작용

1 생물의 특성

1. 세포로 구성: 모든 생물은 세포로 구성된다. ➡ 세포는 생물을 구성하는 구조적 단위 이며 생명활동이 일어나는 기능적 단위이다.

단세포생물	하나의 세포로 이루어진 생물 ۞ 짚신벌레, 아메바
다세포생물	여러 개의 세포가 체계적이고 유기적으로 조직되어 몸을 구성하는 생물 🕲 사람, 양파

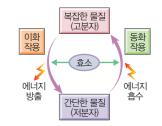
2. 물질대사: 생물이 생명을 유지하기 위해 체내에서 일어나는 모든 화학 반응으로, 에너지 출입을 동반하고 효소가 관여한다.

구분	물질 변화	에너지 변화	Ø
동화작용	간단한 물질을 복잡한 물질로 합성	에너지 흡수(흡열 반응)	광합성, 단백질 합성
이화작용	복잡한 물질을 간단한 물질로 분해	에너지 방출(발열 반응)	세포호흡, 소화

2025 실시 9월 학평 1번 2024 실시 9월 학평 1번 2025 글시 V로 ... 2025 실시 6월 학평 1번

- 3. 자극에 대한 반응과 항상성: 생물은 환경 변화를 자극으로 받아들이고 그 자극에 대 해 적절히 반응한다. 생물은 환경이 변해도 체내 상태를 안정적이고 일정하게 유지하 려는 항상성이 있다.
 - (1) 자극에 대한 반응: 생물은 빛, 온도, 소리 등과 같은 자 극을 감지하고, 그 자극에 적절히 반응한다.
 - ◎ 식물이 빛을 향해 굽어 자란다. 뾰족한 가시에 찔리 면 순간적으로 손을 뗀다. 미모사의 잎은 자극을 받 으면 잎을 빠르게 접어 보호한다.

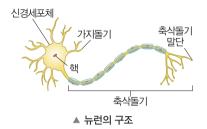
▲ 미모사 잎의 자극에 대한 반응


- (2) 항상성: 체내 · 외의 환경 변화에 대해 생물이 체내 환경을 정상 범위로 유지하려는 성질이다.
 - ₪ 사람은 더울 때 땀을 흘려 체온을 조절한다. 물을 많이 마시면 오줌의 양이 늘 어난다 식사를 한 뒤 혈당량이 증가하면 호르몬의 작용으로 혈당량이 다시 정 상 수준으로 감소한다.
- 4. 발생과 성장: 다세포생물은 발생과 성장을 통해 구조적 · 기능적으로 완전한 개체가
 - (1) 발생: 다세포생물에서 하나의 수정란이 세포분열을 하여 세포 수가 늘어나고, 세포의 종류와 기능이 다양해지면서 개체가 되는 과정이다.
 - 제 개구리의 수정란이 분열하여 올챙이를 거쳐 개구리가 된다.
 - (2) 성장: 어린 개체가 세포분열을 통해 세포 수를 늘려가면서 몸집이 커지고 무게가 증가하여 성체로 자라는 과정이다.
 - 에 어린 개구리가 성체 개구리로 자란다.

1 효소

생물체 내에서 일어나는 화학 반응 과정에서 활성화에너지를 낮추어 반응 속도를 증가시 켜주는 생체촉매

※ 동화작용과 이화작용

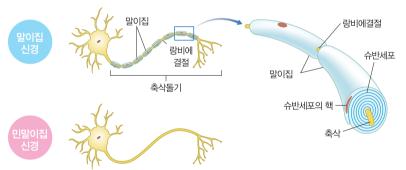

신경자극전도와 시냅스전달

1등급 대비 단원

1 뉴런의 구조와 종류

- 1. 뉴런: 신경계의¹ 구조적 · 기능적 기본 단위가 되는 신경세포이다.
- 2. 뉴런의 구조: 신경세포체, 가지돌기, 축삭돌기로 이루어져 있다.

신경 세포체	• 핵과 여러 세포소기관이 있다. • 신경세포의 생명활동에 필요한 다양한 물질 대사가 일어난다.
가지돌기	다른 뉴런이나 감각기에서 오는 신호를 받아들 이기 위해 신경세포체에서 뻗어 나온 짧은 돌기
축삭돌기	다른 뉴런이나 반응기로 신호를 전달하기 위해 신경세포체에서 뻗어 나온 긴 돌기


1 신경계

- 감각기에서 받아들인 정보를 전달하고, 자극을 판단하여 반응기로 명령을 내리는 역할을 하는 기관계
- •사람의 신경계는 많은 뉴런이 머리와 몸 중앙에 집중되어 뇌와 척수를 이루고, 중심 에서 온몸으로 나오는 신경 다발이 신경망 을 형성한다.

2025 실시 6월 학평 8번 3. 뉴런의 종류 🎒 2024 실시 6월 학평 5번

(1) **말이집² 유무에 따른 구분**: 말이집신경과 민말이집신경으로 구분한다.

말이집 신경	• 축삭돌기가 <u>말이집으로 싸여 있으며, 랑비에결절이 ³ 있다.</u> ⑤ 구심성뉴런, 원심성뉴런 • 말이집에 의해 절연된 축삭돌기 부분에서는 신경자극이 발생하지 않고, 말이집으로 싸여 있지 않은 <u>랑비에결절에서만 활동전위가 발생한다.(</u> 도약전도 ³)
민말이집	• 축삭돌기가 <u>말이집으로 싸여 있지 않다.</u> ⑩ 연합뉴런
신경	• 민말이집신경은 축삭돌기 전체에서 활동전위가 발생한다.

▲ 말이집신경과 민말이집신경

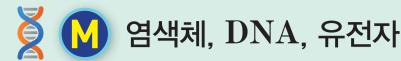
(2) 기능에 따른 구분: 구심성뉴런, 연합뉴런, 원심성뉴런으로 구분한다.

구심성	• 감각기에서 받아들인 자극을 중추신경계의 연합뉴런으로 전달하는 뉴런 ⑩ 감각뉴런
뉴런	• 가지돌기가 비교적 긴 편이며, <u>신경세포체가 축삭돌기의 끝부분이 아닌 중간 부분에 있다.</u>
연합	• 뇌, 척수와 같은 중추신경계를 이루는 뉴런
뉴런	• 구심성뉴런에서 온 정보를 통합하여 원심성뉴런으로 적절한 반응 명령을 내린다.
원심성	• 중추신경계에서 판단하여 내린 명령을 근육과 같은 반응기로 전달하는 뉴런 ⑩ 운동뉴런
뉴런	• 신경세포체가 크고 축삭돌기가 길게 발달되어 있다.

(3) 신호 전달 경로

지극 ➡ 감각기 ➡ 구심성뉴런 ➡ 연합뉴런 ➡ 원심성뉴런 ➡ 반응기 ➡ 반응

💋 말이집

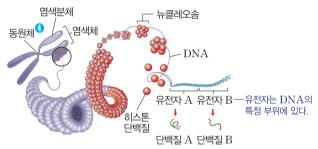

- 슈반세포의 세포막이 길게 늘어나 축삭을 여러 겹으로 감아서 형성된 것
- 축삭돌기를 통한 신호 전달 과정에서 막을 통한 이온의 이동을 막는 절연체 역할을
- 말이집으로 싸여 있는 부분에서는 활동 전위가 발생하지 않는다.

③ 랑비에결절

말이집신경에서 말이집과 말이집 사이에 축 삭이 노출된 부분이다. 말이집신경은 랑비에 결절에서만 활동전위가 형성되어 도약전도가 일어나 축삭을 통한 신호 전달이 빠르게 일 어난다.

4 도약전도

말이집신경에서 말이집이 절연체 역할을 하 므로, 랑비에결절에서만 활동전위가 발생한다. 따라서 랑비에결절에서 다음 랑비에결절로 말이집을 건너뛰어 신경자극전도가 일어나는 현상을 도약전도라고 한다.

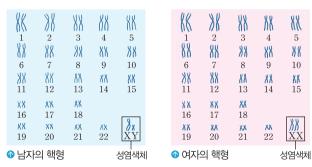


고난도 대비 단원

1 염색체의 구조

- 1. 염색체: 세포가 분열할 때 응축되어 막대 모양으로 관찰되며, 유전정보를 전달한다.
 - ➡ 염색체가 응축되는 까닭: 세포분열 시 유전자의 소실이나 손상을 막고, 딸세포에 유전 물질을 균등하게 나누어 줄 수 있기 때문이다.
 - (1) **염색체의 구조**: DNA(유전물질)와 히스톤 단백질로 구성되어 있다.

유전자 ^①	DNA 의 특정 부분으로, 생물의 형질을 결정하는 유전정보의 단위
뉴클레오솜	8 개의 히스톤 단백질을 ${ m DNA}$ 가 감고 있는 구조
DNA	유전정보를 저장하고 있는 유전물질로, 뉴클레오타이드가 ^② 반복적으로 연결된 이중나선 구조(두가닥의 폴리뉴클레오타이드)
염색분체	DNA 가 복제되어 형성된 것으로, 두 염색분체를 구성하는 DNA 의 유전정보는 동일
유전체	한 개체의 유전정보가 저장되어 있는 여러 분자의 $\mathrm{DNA}^{f 3}$ 집합 전체



▲ 염색체의 구조

(2) 염색체, DNA, 유전자 관계: 유전정보가 저장된 수많은 유전자들이 모여 DNA 를 구성하고. DNA가 히스톤 단백질을 휘감아 뉴클레오솜을 형성한다. 이러한 뉴클레오솜들이 모여 염색체를 구성한다.

2 사람의 염색체

1. 핵형: 한 생물의 체세포에 들어 있는 염색체의 수 $\frac{6}{3}$, 모양, 크기 등과 같은 외형적인 특징이다. ➡ 생물종마다 고유한 핵형을 갖는다.

▲ 사람의 핵형

- 2. 사람의 염색체 구성 출제 2024 실시 9월 학평 9번 2024 실시 9월 학평 20번
 - (1) 상동염색체: 체세포 속에 존재하는 모양과 크기가 같은 한 쌍의 염색체이다. 상 동염색체의 같은 위치에 하나의 형질을 결정하는 대립유전자가 있다. 사람의 염색체에서는 23쌍의 상동염색체가 존재한다.

1 유전자와 단백질

- 유전자가 다르면 합성되는 단백질에 차이가 생겨 형질이 다르게 나타난다.
- ➡ 유전자는 단백질에 대한 정보를 저장한다.
- 생명중심원리:

 $\mathrm{DNA}\overset{\mathrm{D}\mathrm{A}}{
ightarrow}\mathrm{RNA}\overset{\mathrm{tiq}}{
ightarrow}$ 단백질

- mRNA: DNA로부터 단백질 합성에 관련된 유전정보를 전달받아 세포질의 라 이보솜에서 단백질을 합성한다.
- ullet 전사의 개시: DNA를 두 가닥으로 분리 하여 그 중 한 가닥을 주형으로 하여 그에 상보적인 염기서열을 갖는 mRNA 가 닥을 합성하기 시작한다.

2 뉴클레오타이드

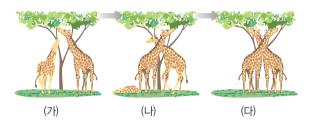
 ${
m DNA}$ 를 구성하는 기본 단위로, 당, 인산, 염기가 1:1:1로 결합되어 있다. 당은 디옥시 라이보스이다

③ DNA의 구조

- 퓨린계열 염기: A, G
- 피리미딘계열 염기: T, C
- A = T: 수소 2중 결합 G ≡C: 수소 3중 결합
- 샤가프의 법칙
- ① DNA를 구성하는 A, T, G, C의 비 율은 생물종에 따라 다름
- ② 각 생물의 DNA에서 A과 T의 비율이 같고(A=T), G과 C의 비율이 같음
- ➡ 퓨린계열 염기(A+G)의 비율과 피리 미딘계열 염기(T+C)의 비율이 같다.

4 동원체

염색체에서 세포분열 시 방추사가 붙는 잘 록한 부분으로 동원체의 위치에 따라 염색 체의 모양이 달라진다.


6 여러 생물종의 염색체 수

생물종	염색체 수	생물종	염색체 수
사람	46	개	78
감자	48	닭	78

- 생물종의 복잡한 정도는 염색체 수와 관련이
- 염색체 수가 같아도 종이 다르면 염색체의 크기와 모양이 다르다
- 같은 종의 생물에서는 성별이 같으면 핵형이 같다.

1 다윈의 진화론

○ 1 그림은 다윈의 자연선택설에 의한 기린의 진화 과정을 나타낸 것이다.

이에 대한 설명으로 옳은 것은 (), 옳지 않은 것은 ×표 하시오.

(1)(가)에서 기린의 다양한 목 길이는 변이에 해당한다.

 $(1 \bigcirc \times)$

- (2) (나)에서 개체들은 먹이와 서식 공간을 두고 생존경쟁을 하다 (2 ○. ×)
- (3) (나)에서 목이 짧은 기린이 자연선택되었다. (3 ○, ×)
- (4) (다)에서 목이 긴 형질이 자손에게 유전된다. (4 ○, ×)

○2 다음은 자연선택에 대한 설명이다. 빈칸에 알맞은 말을 쓰시오.

(1) 다위의 자연선택설

- 자손의 과잉 생산과 생존경쟁: 생물은 살아남을 수 있는 수보다 더 많은 자손을 생산하며, 자손끼리 생존경쟁이 발생
- 자연선택: 환경에 가장 잘 (5)하는 변이를 가 진 개체들이 경쟁에서 살아남고 더 많은 자손 생산
- 진화: 세대가 거듭될수록 다음 세대는 이전 세대와는 다른 (6) 특성을 갖게 되며, 이 과정이 누적되어 워래의 집단과 다른 생물 집단 형성
- (2) 다윈의 자연선택설의 한계: (7)의 원인을 명 확하게 설명하지 못함

2 진화의 연구방법

03 다음은 진화의 증거에 관한 예이다. 각 예와 관련된 진화의 증거를 쓰시오.

(1) 고래 화석	(8)
(2) 갈라파고스 군도의 핀치	(9)
(3) 새의 날개와 곤충의 날개	(10)
(4) 첰추돗뭌 초기 배아의 유사섯	(11)

3 개체군 진화의 원리

04 다음은 대립유전자빈도를 구하는 계산 과정이다. 빈칸에 알 맞은 숫자를 쓰시오.

검은색 몸 형질의 대립유전자 A와 흰색 몸 형질의 대립유전자 a를 가지고 있는 어느 집단에서 유전자형에 따른 개체수로부터 대립유전자 A의 빈도(p)와 a의 빈도(q)를 표와 같이 계산할 수 있다.

표현형	검은색 몸		검은색 몸		흰색 몸
유전자형		AA	Aa		aa
개체수	개체수 64		32		4
유전자형		A의수			a의 수
AA		128		0	
Aa		32			32
aa		0			8
합계		160		40	
$\rightarrow p=(12$), q=	:(13)

05 다음 설명에 해당하는 유전자풀의 변화 요인을 쓰시오.

- (1) 바이러스 등으로 DNA 염기서열에 변화가 생겨 새로운 대립유전자가 나타나는 현상 (14)
- (2) 특정 형질을 가진 개체가 다른 개체보다 생존과 번식에 유리하여 더 많은 유전자를 다음 세대에 남기면 집단의 유전자풀이 변함 (15)
- (3) 두 집단 사이에서 개체의 이주가 일어나면 대립유전자가 집단에 유입되거나 밖으로 유출되어 대립유전자의 구성 과 빈도가 변하는 현상 (16)
- (4) 개체는 자손에게 자신이 가지고 있는 대립유전자 중 하나를 무작위로 전달하기 때문에 세대와 세대 사이에서 대립유전자빈도가 예측할 수 없는 방향으로 변하는 현상

(17

4 종분화

○ 다음은 종분화에 대한 설명이다. 빈칸에 알맞은 말을 쓰시오.

한 종에 속하였던 두 집단 사이에 생식적 격리가 발생하여 두 집단이 서로 다른 종으로 나뉘는 현상으로, 한 개체군이 지리적 격리에 의해 다른 개체군과 더 이상 (18) 교류가 일어나지 않을 때 나타난다. 각 개체군은 자신만의 유전자풀을 가지게 되므로, 지리적 격리가 사라지더라도 (19)으로 격리되어 서로 다른 종이 된다.

내신+학평 대비 기출문제 [개념별]

1 생물의 특성

A01 ***

. 2025 실시 9월 학평 1 / 생 1 (고2)

다음은 어떤 담수어에 대한 자료이다.

민물에 사는 이 담수어는 주 변보다 체액의 농도가 높기 때 문에 농도가 낮은 다량의 오줌 을 배출하여 ① 체액의 농도를 일정하게 유지한다.

①에 나타난 생물의 특성과 가장 관련이 깊은 것은?

- ① 구더기는 파리의 알에서 생긴다
- ② 짚신벌레는 분열법으로 번식한다.
- ③ 소나무는 광합성을 통해 유기물을 합성한다.
- ④ 적록색맹인 어머니로부터 적록색맹인 아들이 태어난다.
- (5) 식사 후 호르몬의 작용으로 혈당량을 일정하게 유지한다.

A03 ***

2024 실시 10월 학평 1 / 생 ፲ (고2)

다음은 어떤 올빼미에 대한 설명이다.

올빼미는 오른쪽 귀가 왼쪽 귀보다 높은 곳에 있어 주변 에서 발생한 음파가 양쪽 귀에 도달하는 시간에 차이가 있 다. 올빼미의 이러한 특성은 밤에 사냥감의 방향과 위치를 파악하는 데 적합하다.

이 자료에 나타난 생물의 특성과 가장 관련이 깊은 것은?

- ① 항상성
- ② 물질대사
- ③ 발생과 성장
- ④ 생식과 유전⑤ 적응과 진화

A02 ***

다음은 송골매에 대한 설명이다.

③ 송골매는 먹이를 포착하면 빠르 게 하강하여 () 먹이를 낚아채고 곧 바로 위로 솟구쳐 오른다. 이러한 비 행이 가능한 이유는 공기 흐름이 빨 라지면 ⓒ 날갯죽지 근처의 깃털들 이 진동하면서 속도를 감지하여 깃

털이 세워져 양력이 증가하기 때문이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-----[보기]

- ㄱ. ㈜은 세포로 구성되어 있다.
- ㄴ. ⓒ 과정에서 ATP가 이용된다.
- 다. (C)은 자극에 대한 반응의 예에 해당한다.
- (1) 7 (2) L (3) 7, E (4) L, E (5) 7, L, E

A04 ***

___ 2024 실시 9월 학평 1/생 I (고2)

다음은 귀뚜라미에 대한 자료이다.

앞다리에 고막이 있는 이 귀뚜라미는 ①소리의 진동이 앞다리에 전달되면 소리에 따라 움직인다. 이를 통해 다른 귀뚜라미를 찾아 번식 활동을 한다.

- ①에 나타난 생물의 특성과 가장 관련이 깊은 것은?
- ① 병아리가 자라서 닭이 된다.
- ② 소나무는 광합성을 통해 유기물을 합성한다.
- ③ 사막에 서식하는 선인장은 가시 형태의 잎을 갖는다.
- ④ 플라나리아에게 빛을 비추면 어두운 곳으로 이동한다.
- (5) 적록색맹인 어머니로부터 적록색맹인 아들이 태어난다.

내신+학평 대비 기출문제 [유형별]

PRACTICE QUESTION

1 질병과 병원체

유형 01 병원체의 종류에 따른 특징 구분

단서 질병과 병원체의 특징 또는 그래프가 제시되어 있다.

(발생) 병원체의 특징을 구분할 수 있어야 한다.

K01 ***

2025 실시 9월 학평 9 / 생 ፤ (고2)

표는 사람의 질병 $A \sim C$ 의 병원체에서 특징의 유무를 나타낸 것 이다. $A \sim C$ 는 결핵, 독감, 무좀을 순서 없이 나타낸 것이다.

병원체 특징	A의 병원체	B의 병원체	C의 병원체
유전물질을 갖는다.	9	?	0
스스로 물질대사를 한다.	×	?	0
곰팡이에 속한다.	×	0	×

(○: 있음, X: 없음)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

----[보기]-

- ㄱ. ⑦은 '○'이다.
- L. B는 결핵이다.
- 다. C의 병원체는 바이러스이다.

K02 ***

2024 실시 9월 학평 11 / 생 I (고2)

그림은 바이러스 A를, 표는 사람 질병의 특징을 나타낸 것이다. A는 에볼라 출혈열과 결핵의 병원체 중 하나이다.

질병	특징
에볼라 출혈열	열이 나며 장기에서 출혈이 일어난다.
결핵	9

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

[보기]

- ㄱ. A는 결핵의 병원체이다.
- L. A는 세포로 구성되어 있다.
- ㄷ. '치료에 항생제가 사용된다.'는 ⊙에 해당한다.

K03 ***

2025 대비 수능 7 / 생 1 (고3)

그림은 사람면역결핍바이러스(HIV)에 감염된 사람에서

체내 HIV의 수(@)와 HIV에 감 염된 사람이 결핵의 병원체에 노출 되었을 때 결핵 발병 확률(ⓑ)을 시 간에 따라 각각 나타낸 것이다. 이에 대한 설명으로 옳은 것만을

[보기]에서 있는 대로 고른 것은?

(상댓값 시간(년)

-----[보기]-

- ㄱ. 결핵의 치료에 항생제가 사용된다.
- L. HIV는 살아 있는 숙주세포 안에서만 증식할 수 있다.
- □ (b)는 구간 I 에서가 구간 II 에서보다 높다.

KO4 *** 2024 실시 7월 학평 6 / 생 I (고3)

표 (가)는 질병의 특징을, (나)는 (가) 중에서 질병 A. B.말라리아가 갖는 특징의 개수를 나타낸 것이다. A와 B는 독감과 무좀을 순서 없이 나타낸 것이다.

특징
○ 모기를 매개로 전염된다.
○ 병원체가 유전물질을 갖는다.
○ ② 병원체는 독립적으로 물질대사를

질병	특징의 개수			
A	?			
В	2			
말라리아	9			
(Lł)				

(フト)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-----[보기]-

- ㄱ. A의 병원체는 곰팡이다.
- ㄴ. B는 특징 @를 갖는다.
- ㄷ. ①은 2이다.

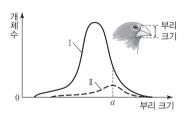
(1) \neg (2) \vdash (3) \vdash (4) \neg , \vdash (5) \vdash , \vdash

서술형 · 단답형 문제

021 ***

다음은 생물의 진화를 뒷받침하는 증거에 관한 자료들이다.

- (가) 고래의 조상 화석에서는 온전한 뒷다리가 발견된다.
- (나) 새의 날개와 곤충의 날개는 발생 기원은 다르지만, 비슷한 환경에 적응하며 생김새와 기능이 비슷해졌다.
- (다) 단백질의 아미노산서열 차이로 진화의 역사를 파악할 수 있다. 표는 척추동물에서 글로빈 단백질의 아미노산 서열의 유사성을 사람의 기준으로 나타낸 것이다.



- (1) (가)와 (나)에 해당하는 진화의 증거를 각각 쓰시오. [단답형]
- (2) (다)를 바탕으로 사람. 붉은털원숭이. 칠성장어의 유연관계를 밝 히고 이유를 서술하시오. (서술형)

022 ***

··· 내신 기출 변형

그림은 갈라파고스군도의 메이저섬에서 가뭄 전(I)과 가뭄 후(II) 에 나타난 핀치새 개체군의 개체수(마리)와 부리의 크기(mm) 변화 를 관찰한 결과이다. 가뭄으로 인해 작고 연한 씨앗이 급격히 줄어 들었고, 크고 딱딱한 씨앗이 많아졌다.

- (1) 가뭄 전과 후 중 핀치새 부리 크기의 변이는 언제 더 다양한지 쓰시오 (단답형)
- (2) 가뭄 이후 핀치새의 부리 크기와 개체수 분포가 변한 원인을 먹이 환경을 근거로 들어 서술하시오. 서술형

023 ***

··· 내신 기출 변형

다음은 유전자품의 변화에 대한 사례이다

아메리칸 인디언의 ABO식 혈액형은 B형이나 AB형은 거의 없고 ()형이 특히 많다고 한다. 이는 아메리카 대륙에 적은 수의 이주민들이 새로 정착한 것과 관련이 있다.

- (1) 사례에 나타난 ABO식 혈액형 유전자풀의 변화 요인은 무엇 인지 쓰시오. (단답형)
- (2) 아메리카 인디언들의 ABO식 혈액형에서 O형이 많아진 까닭 을 설명하시오. (서술형)

024

- 내신 기출 변형

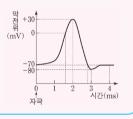
다음은 엔사티나도롱뇽의 종분화 과정에 대한 설명이다.

엔사티나도롱뇽 $(1 \sim 5)$ 은 중앙 계곡의 가장자리를 따라 고리 형태로 분포한다. 인접한 개체군 간에는 생식이 가능 하지만 고리 양 끝의 두 개체군 3과 5는 지리적으로 가까 움에도 불구하고 생식적으로 격리되어 있다.

- 1. picta
- 2. xanthoptica
- 3. eschscholtzii
- 4. platensis
- 5. klaubreri
- (1) $1 \sim 5$ 중 고리종 관계에 있는 두 종을 고르시오. (단명)
- (2) 3과 5는 서로 다른 종인지 같은 종인지 서술하고 이유를 설명 하시오. 서술형

신경자극전도와 시냅스전달 문제

• 이 유형은 각 신경의 신경자극전도 속도와 자극을 주 고 경과된 시간을 묻는 형태로 주로 출제된다.


다음은 민말이집 신경 A의 신경자극전도와 전달에 대한 자료이다.

○ A는 2개의 뉴런으로 구성되고, 각 뉴런의 신경자극전도 속도는 %로 같다. 그림은 A의 지점 $d_1 \sim d_5$ 의 위치를. 표는 \bigcirc d_1 에 역치 이상의 자극을 1회 주고 경과된 시 간이 2 ms, 4 ms, 8 ms일 때 $d_1 \sim d_5$ 에서의 막전위를 나타낸 것이다. I~ Ⅲ은 2 ms, 4 ms, 8 ms를 순서 없이 나타낸 것이다.

시간		막전위(mV)				
시신	d_1	d_2	d_3	d_4	d_5	
I	?	- 70	?	+30	0	
II	+30	?	- 70	?	?	
Ш	?	-80	+30	?	?	

○ A에서 활동전위가 발생하였을 때. 각 지점에서의 막전위 변화는 그림 과 같다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. A에서 신경자극전도는 1회 일어났고. 휴지전위는 -70 mV이다.) 2024 대비 수능 10

·[보기]·

- ㄱ. ⑦는 2 cm/ms이다.
- L. (a)는 4이다.
- \Box 이 9 ms일 때 d_s 에서 재분극이 일어나고 있다.

1 7

② L

37, 64, 6

(5) 7, L, E

단서+발상

- \square 시간이 \square , \square 일 때 막전위가 \square \square \square 지점이 모두 존재하는 것에 주목한다.
- 발생 I 일 때는 d_4 , II 일 때는 d_1 , III일 때는 d_3 에서의 막전위가 각각 $+30~\mathrm{mV}$ 가 되므로, 시간의 순서가 $\mathbb{I}(2 \text{ ms}) \rightarrow \mathbb{I}(4 \text{ ms}) \rightarrow \mathbb{I}(8 \text{ ms})$ 임을 알아 내야 한다.
- (해결) III일 때 d_2 의 막전위가 -80 mV이므로 d_1 에서 d_2 까지 가는 데 걸린 시 간이 1 ms임을 이용하여 신경자극전도 속도를 구해야 고난도 문제를 해결 할수 있다.

┃문제 해결 과정 ┃

step 1 I ~ II 매칭하기

- ${
 m I}$ 일 때 d_4 , ${
 m II}$ 일 때 d_1 , ${
 m III}$ 일 때 d_3 에서의 막전위가 모두 $+30~{
 m mV}$ 로 동일
- 가장 먼 거리인 d_4 에서 $+30~\mathrm{mV}$ 를 나타내는 I 이 I ~ $\mathrm{I\hspace{-.1em}I}$ 중 가장 시간이 많이 흐른 것이므로 I이 1 ms에 해당한다.
- 가장 가까운 거리인 d_1 에서 $+30~\mathrm{mV}$ 를 나타내는 II 가 I ~ III 중 가장 시간 이 적게 흐른 것이므로 Ⅱ 가 2 ms에 해당한다.
- 시간의 순서는 3 이다.

step 2 A의 신경자극전도 속도 구하기

- III(4 ms)일 때, d_2 에서의 막전위는 -80 mV이므로 d_2 에 자극이 온 후 경 과된 시간이 3 ms이다.
- \bigcirc (4 ms)= d_1 에서 d_2 까지 이동하는 데 걸린 시간+ d_2 에 자극이 온 후 경 과된 시간(3 ms)이므로, d_1 에서 d_2 까지 이동하는 데 걸린 시간은 1 ms이다. d_1 과 d_2 사이의 거리가 2 cm이므로 신경자극전도 속도는 $\frac{4}{4}$ cm/ms이다.

step 3 (a) 구하기

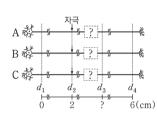
- III(4 ms)일 때, d_3 에서의 막전위는 +30 mV이므로 d_3 에 자극이 온 후 경 과된 시간이 2 ms이다.
- \bigcirc (4 ms)= d_1 에서 d_3 까지 이동하는 데 걸린 시간+ d_3 에 자극이 온 후 경 과된 시간(2 ms)이므로, d_1 에서 d_3 까지 이동하는 데 걸린 시간은 2 ms이다. A에서의 신경자극전도 속도는 2 cm/ms이므로, d_1 에서 d_3 까지의 거리는 cm이다. 따라서 @는 4이다.

| 보기 분석 |

- ¬. ㈜는 2 cm/ms이다. (○)
- step 2 에 따르면, ⑦는 2 cm/ms이다.
- ∟. @는 4이다. (○)
- step 3 에 따르면, ⓐ는 4이다.
- \Box 이 9 ms일 때 d_5 에서 재분극이 일어나고 있다. (\bigcirc)
- \bigcirc 이 I (8 ms)일 때 d_5 에서의 막전위는 0 mV이므로 \bigcirc (8 ms)= d_1 에서 d_5 까지 이동하는 데 걸린 시간 $+d_5$ 에 자극이 온 후 경과된 시간(약 $1.6 \, \mathrm{ms}$) 이므로, d_1 에서 d_5 까지 이동하는 데 걸린 시간은 약 $6.4~\mathrm{ms}$ 이다. \bigcirc (9 ms)= d_1 에서 d_5 까지 이동하는 데 걸린 시간(약 6.4 ms)+ d_5 에 자 극이 온 후 경과된 시간이므로, \bigcirc 이 9 ms 일 때 $d_{\mathtt{5}}$ 에 자극이 온 후 경과된 시간은 약 2.6 ms이며, d_5 에서는 재분극이 일어나고 있다.
- ∴ 정답은 ⑤ ¬, ∟, ⊏이다.

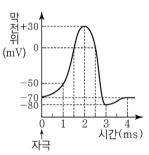
이 유형을 대비하기 위해서는 $+30 \,\mathrm{mV}$, $-80 \,\mathrm{mV}$ 처럼 막전위 그래프에 표시된 특이값에 주목하고. 자극을 준 지점에서는 경과 된 시간 모두 막전위 변화에 사용된다는 것을 알아야 한다.

 4 S 4 (sm 8) I 4 (sm 8) I 4 (sm 2) I 4 S 4 S 4 [4 S 4 S



1등급 대비 기출 문제

H32 **♦ 1등급 대비** 2024 실시 9월 한평 18 / 생 ፲ (고2)

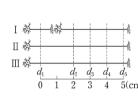

다음은 민말이집신경 $A \sim C$ 의 신경자극전도와 시냅스전달에 대한 자료이다.

- \circ 그림은 A \sim C의 지점 $d_1\sim d_4$ 의 위치를 나타낸 것이고. $A \sim C$ 중 한 신경에만 d_2 와 d_3 사이에 하나의 시냅스 가 있다.
- \circ 표는 \bigcirc $A \sim C$ 의 d_2 에 역치 이상의 자극을 동시에 1회 주고 경과된 시간이 5 ms일 때 d_1 , d_3 , d_4 에서 측정한 막전위를 나타낸 것이다. $I \sim \mathbb{I}$ 은 d_1 , d_3 , d_4 를 순서 없이 나타낸 것이다.

신경		s일 때 측 전위(m V	
	I	II	II
A	(a)	0	Ь
В	Ь	- 50	?
С	?	Ь	(a)

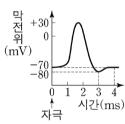
- A와 B의 신경자극전도 속도는 각각 1 cm/ms와 2 cm/ms 중 하나이며. C의 신경자극전도 속도는 2cm/ms이다. 시냅스전뉴런과 시냅스후뉴런의 신경자 극전도 속도는 같다
- A~C에서 활동전위가 발생했을 때, 각 지점에 서의 막전위 변화는 그 림과 같다

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단, $A \sim C$ 에서 신경자극전도는 각각 1회 일어났고, 휴지전위는 -70 mV이다.) (3점)


--- [보기]・

- ㄱ. 시냅스는 A에 존재한다.
- L. <u>ⓑ</u>의 값은 1보다 크다.
- 다. \bigcirc 이 4 ms일 때 B의 d_3 에서의 막전위는 +30 mV이다.
- (1) 7 (2) 5 (3) 7, 1, 4) 1, 5 7, 1, 5

H33 ♣ 1등급 대비 _____ 2023 대비 수능 15 / 생 I (고3)


다음은 민말이집신경 I~Ⅲ의 신경자극전도와 전달에 대한 자료이다.

 \circ 그림은 $I \sim \mathbb{I}$ 의 지점 $d_1 \sim d_5$ 의 위치를, 표는 \bigcirc I 과 Ⅱ의 P에, Ⅲ의 Q에 역치 이상의 자극을 동시에 1회 주고 경과된 시간이 4 ms일 때 $d_1 \sim d_5$ 에서의 막전위를 나타낸 것이다. P와 Q는 각각 $d_1 \sim d_5$ 중 하나이다.

	신경	$4~\mathrm{ms}$ 일 때 막전위(mV)				
	26	d_1	d_2	d_3	d_4	d_5
	I	-70	a	?	b	?
	I	©	a	?	©	b
n)	II	©	-80	?	a	?

- \circ I을 구성하는 두 뉴런의 신경자극전도 속도는 2v로 같 고, \mathbb{I} 와 \mathbb{I} 의 신경자극전도 속도는 각각 3v와 6v이다.
- I ~ III 각각에서 활동전위 가 발생하였을 때, 각 지점 에서의 막전위 변화는 그림 과 같다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. $I \sim \mathbf{II}$ 에서 신경자극전도는 각각 1회 일어났고. 휴지전위는 -70 mV이다.) (3점)

[보기]

- ㄱ. Q는 d_4 이다.
- L. Ⅱ의 신경자극전도 속도는 2 cm/ms이다.
- \Box 이 5 ms일 때 \Box 의 d_5 에서 재분극이 일어나고 있다.
- (1) ¬
- ② L
- ③ 7. ⊏

- (4) L. C
- (5) 7. L. E

어떤 동물 종(2n=6)의 유전형질 %는 2쌍의 대

고난도 대비 문제 특강

• 이 유형은 표와 염색체 그림으로 특정 형질에 대한 유전자형 및 핵상, 성별을 파악하여 각 염색체에 해당하는 대립유전자가 무엇인지 묻는 형태가 주로 출제된다.

립유전자 A와 a, B와 b에 의해 결정된다. 표는 이 동물 종의 개체 P와 Q의 세포 $I \sim IV$ 에서 대립유전자 $\bigcirc \sim$ (a)의 DNA 상대량을, 그림은 세포 (7)와 (4) 각각에 들어 있는 모든 염색체를 나타낸 것이다. (7)와 (4)는 각각 $I \sim IV$ 중 하나이고, $\bigcirc \sim (a)$ 은 A, a, B, b를 순서 없이 나타낸 것이다. A는 수컷이고 성염색체는 A는 삼것이다.

세포]	${ m DNA}$ 상대량			
시	つ	(L)	©	2	
I	0	0	?	1	
II	1	?	0	0	
Ш	0	0	4	2	
IV	?	1	1	0	

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, A, a, B, b 각각의 1개당 DNA 상대량은 1이다.)

[보기]

2024 실시 5월 학평 16 / 생 I (고3)

- ㄱ. (가)는 P의 세포이다.
- ㄴ. **IV**에 B가 있다.
- □. Ⅲ과 Ⅳ의 핵상은 같다.

단서+발상

- (판서) 2n=6인 수컷 P, 암컷 Q의 세포 I~Ⅳ에서 대립유전자 ⑤~ ⑧의 DNA 상대량. 핵상이 n인 세포 (가)와 (나)의 핵형이 제시되어 있다.
- (빨상) 세포 Ⅲ에서 ⑤=0, ⑥=0, ⑥=4, ⑧=2임을 통해 핵상은 2n, XY를 갖는 수컷의 세포이며 ⑥은 상염색체에 존재하는 유전자, ⑧은 X염색체에 존재하는 유전자임을 추론할 수 있다.
- (책용) 감수분열 시 상동염색체가 분리되어 염색체 수가 절반으로 줄어들고 1쌍의 대립유전자가 나누어지는 개념을 적용하여 세포 $I \sim I$ 에 핵상과 $\odot \sim 2$ 이 대립유전자 관계를 파악해야 한다.

|문제 해결 과정|

step 1 つ~ ②의 대립유전자 관계 파악하기

• 세포 (7)와 (4)는 모두 핵상과 염색체 수가 n=3인 세포이다. (7)에서 a가 존재하는 염색체와 (4)에서 (4)이 존재하는 염색체는 크기와 모양이 같은 상동염색체이므로 (4)은 (4)은 (4)0이다.

(가)에서 \bigcirc 이 존재하는 염색체와 (나)에서 B가 존재하는 염색체는 크기와 모양이 같은 상동염색체이므로 \bigcirc 은 B 또는 b이다.

- ★ ②과 ③은 대립유전자가 아니다.
- 세포 Ⅲ에서 ⑥의 DNA 상대량은 4이고, ⑧의 DNA 상대량은 2이므로
 Ⅲ의 핵상은 2m이며, XY염색체를 갖는 수컷 P의 세포이다

 $\textcircled{e}(A \times a)$ 은 상염색체에 존재하는 유전자이며, e은 X염색체에 존재하는 유전자이다.

P의 유전자형은 ©©②Y이고, ©과 ②은 대립유전자가 아니므로, ③과 ② 은 X 염색체에 존재하는 대립유전자(B 또는 b)이고, $\mathbb C$ 과 ©은 상염색체에 존재하는 대립유전자(A 또는 a)이다.

• 세포 IV에서 상염색체의 대립유전자인 \bigcirc 과 \bigcirc (A 또는 a)의 값이 모두 1이 므로 IV의 핵상은 2n이고 P가 가지고 있지 않은 \bigcirc 을 갖고 있으므로

의 세포이다. 함정

IV는 핵상이 2n인 암컷 세포이므로 ①의 값은 2이고 유전자형은 ⑥⑥①① 이다.

• ②이 존재하는 I은 P의 세포이고, ③이 존재하는 II는 Q의 세포이다. 핵상이 n인 세포 (나)에서 ②과 B가 존재하므로 (나)는 세포 I 이고, ②은 2 이다. (가)는 세포 II 이고, ③은 b이며, ②은 a이다. 따라서 ②은 3

|보기 분석|

이다.

¬. (가)는 P의 세포이다. (×)

IV에서 상염색체의 대립유전자인 ②과 ⑤의 값이 모두 4
 IV의 핵상은 2n이고 암컷 Q의 세포이다.
 따라서 X염색체에 존재하는 대립유전자 ③은 b이고, ⑧은 B이다.

• 상염색체에 존재하는 ②은 a이고, ②은 A이다.

P의 유전자형은 **5** 이고, Q의 유전자형은 **6** 이므로 a와 b가 존재하는 (가)는 세포 Ⅱ 이며, 암컷인 Q의 세포이다.

L. Ⅳ에 B가 있다. (×)

• **step 2** 에 의해 **IV**의 핵상은 2*n*이고 암컷 Q의 세포이다. **②**은 B이므로 **IV**에는 B가 존재하지 않는다.

□. Ⅲ과 Ⅳ의 핵상은 같다. (○)

• \bigcirc 과 @은 X염색체에 존재하는 대립유전자이고, \bigcirc 과 \bigcirc 은 상염색체에 존재하는 대립유전자이다.

Ⅲ에서 ⓒ의 DNA 상대량은 4이고, @의 DNA 상대량은 2이므로 Ⅲ의 핵 상은 2*n*이며, XY염색체를 갖는 수컷 P의 세포이다.

IV에서 상염색체의 대립유전자인 ①과 ②의 값이 모두 1이므로 IV의 핵상은 2n이고 P가 가지고 있지 않은 ①을 가지고 있으므로 암컷 Q의 세포이다. III과 IV의 핵상은 2n으로 같다.

∴ 정답은 ② □이다.

V

이 유형을 대비하기 위해서는 염색체 그림을 통해 핵형과 핵상, 성별을 파악하고, DNA 상대량 표를 보며 각 염색체에 해당하는 대립유전자를 찾아낼 수 있어야 한다.

[점함] 1임첫 Q 오 B 3 A 4 1 5 AABY 6 Aabb

고난도 대비 기출 문제

M21 **⇔** 고난도

2023 실시 9월 학평 16 / 생 I (고2)

사람의 유전형질 (가)는 1쌍의 대립유전자 A와 a에 의해. (나)는 1쌍의 대립유전자 B와 b에 의해 결정된다. (가)의 유전자는 상염색 체에. (나)의 유전자는 X염색체에 있다. 표는 남자 P의 세포 $I \sim$ \blacksquare 과 여자 Q의 세포 \blacksquare V \sim VI 에서 \blacksquare A와 대립유전자 \bigcirc \sim \bigcirc 의 유 무를 나타낸 것이다. \bigcirc \sim \bigcirc 은 a, B, b를 순서 없이 나타낸 것이며. I 과 IV의 핵상은 2n이다.

대립		P의 세포			Q의 세포	
유전자	I	II	II	IV	V	VI
A	0	0	×	0	0	0
9	0	0	×	0	0	×
(L)	×	×	×	0	×	0
©	0	×	0	×	×	×

(○: 있음, ×: 없음)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. 돌연변이와 교차는 고려하지 않는다.) (3점)

- [보기]·

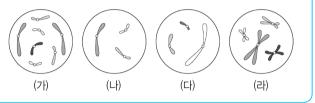
- \neg . \blacksquare 의 핵상은 n이다.
- ㄴ. IV에는 a가 있다.
- □ (□)은 (□)의 대립유전자이다.

M22 ☆ 고난도 _____2021 대비 수능 6 / 생 I (고3)

그림은 서로 다른 종인 동물 A(2n=?)와 B(2n=?)의 세포 $(\mathcal{T}) \sim (\Gamma)$ 각각에 들어 있는 염색체 중 X염색체를 제외한 나 머지 염색체를 모두 나타낸 것이다. (γ) \sim (Γ) 중 2개는 Λ 의 세포 이고, 나머지 1개는 B의 세포이다. A와 B는 성이 다르고, A와 B의 성염색체는 암컷이 XX, 수컷이 XY이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. 돌연변이는 고려하지 않는다.)

----[보기]-


- ㄱ. (가)와 (다)의 핵상은 같다.
- L. A는 수컷이다.
- 다. B의 체세포분열 중기의 세포 1개당 염색분체 수는 16이다.

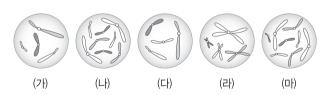
M23 ❖ 고난도 2023 대비 수능 16/생 I (고3)

다음은 핵상이 2n인 동물 $A \sim C$ 의 세포 $(r) \sim (r)$ 에 대한 자료이다.

- A와 B는 서로 같은 종이고. B와 C는 서로 다른 종이며. B와 C의 체세포 1개당 염색체 수는 서로 다르다.
- (가)~(라) 중 2개는 암컷의. 나머지 2개는 수컷의 세포 이다. A~C의 성염색체는 암컷이 XX, 수컷이 XY이다.
- 그림은 (가)~(라) 각각에 들어 있는 모든 상염색체와 ①을 나타낸 것이다. ②은 X염색체와 Y염색체 중 하나이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-----[보기]---


- ㄱ. ⑦은 Y염색체이다.
- ㄴ. (가)와 (라)는 서로 다른 개체의 세포이다.
- c. C의 체세포분열 중기의 세포 1개당 상염색체의 염색 분체 수는 8이다.

17 2 4 3 7, 5 4 4 4, 5 7, 4, 5

M24 ↔ ¬나도

학력 평가 기출 / 생 I (고3)

그림은 세포 (가)~(마) 각각에 들어 있는 모든 염색체를 나타낸 것 이다. $(Y) \sim (D)$ 는 각각 서로 다른 개체 A, B, C의 세포 중 하나이 다. A와 B는 같은 종이고, B와 C는 수컷이다. $A \sim C$ 는 2n=8이며, $A \sim C$ 의 성염색체는 암컷이 XX, 수컷이 XY이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. 돌연변이는 고려하지 않는다.) (3점)

-----[早기] -

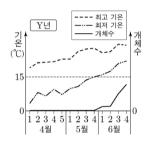
- ㄱ. (라)는 B의 세포이다.
- ㄴ. (가)와 (다)는 같은 개체의 세포이다.
- ㄷ. 세포 1 개당 $\frac{\mathrm{X}\,\mathrm{G}\,\mathrm{U}}{\mathrm{V}\,\mathrm{G}\,\mathrm{U}}$ 의 값은 (나)가 (마)의 2배이다.

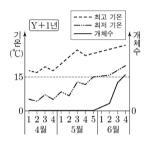
통합과학 연계 수능 기축 문제

통합과학2 Ⅲ. 과학과 미래 사회

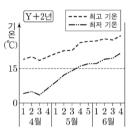
3. 과학 기술의 활용 - 01. 과학의 유용성과 필요성

L17 ***


2028 대비 수능 예시 9 (2차)


다음은 말라리아 매개 모기 A의 발생 시기를 알아보기 위한 탐구 활동이다.

○ 말라리아의 병원체는 A를 매개로 전파된다.


[탐구활동]

- (가) 말라리아 발병 지역에서 4월부터 6월까지 주별로 채집된 A의 개체수, 주별 최고 기온과 최저 기온에 대한 데이터를 연도별로 수집하였다.
- (나) (가)의 데이터를 그림과 같이 그래프로 나타내고 분석 하였다.

- (다) 이 상승하다가 15°C 이상일 때부터 A가 채집 되기 시작한다는 결론을 내렸다. ①은 '최고 기온'과 '최저 기온' 중 하나이다.
- (라) 이 지역 주별 최고 기온과 최저 기온이 그림과 같이 예측될 때, (다)의 결론을 근거로 A가 채집되기 시작 하는 시기를 (L) 로 예상하였다

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (2.5점)

- ㄱ. 말라리아는 감염병이다.
- ㄴ. ①은 '최고 기온'이다.
- ㄷ. '6월'은 ⓒ에 해당한다.
- \bigcirc
- ② L
- (3) ⊏
- (4) 7. L
- (5) ¬. □

L18 ***

2020 실시 11월 한평 3 / 생 ፲ (고2)

표는 병원체 A와 B에서 특징의 유무를 나타낸 것이다. A와 B는 말라리아의 병원체와 무좀의 병원체를 순서없이 나타낸 것이다.

특징 병원체	원생생물이다.	세포 구조로 되어 있다.
A	?	9
В	×	0

(○: 있음. x : 없음)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (3점)

---[보기]-

- ㄱ. ⑦은 '○'이다.
- L. B는 무좀의 병원체이다.
- ㄷ. 말라리아와 무좀은 모두 감염성질환이다.
- ① ¬ ② L
- (3) ¬. □ (4) ∟. □
- (5) 7, L, E

L19 ⊕ 고난도

2021 실시 9월 학평 11 / 생 I (고2)

표 (가)는 병원체 $A \sim C$ 가 갖는 특징 $\bigcirc \sim \bigcirc$ 의 유무를. (나)는 \bigcirc \sim \bigcirc 을 순서 없이 나타낸 것이다. $A \sim C$ 는 각각 결핵의 병원체. 독감의 병원체, 무좀의 병원체 중 하나이다.

특징 병원체	9	©.	©
A	a	?	0
В	?	0	×
С	×	Ь	×

특징(¬ ~ □)

- 곰팡이이다.
- 세포 구조를 갖는다.
- 감염성질환을 일으킨다.

 $(\bigcirc: 있음, \times: 없음)$

(フト)

(나)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-----[보기]-

- 기. A는 독감의 병원체이다.
- L. B는 원생생물이다.
- □ (a)와 (b)는 모두 '()'이다
- ① ¬
- (2) L

- 37, 6 4 6, 6 5 7, 6, 6

대단원 마무리 문제

I. 생명 시스템의 구성 [A~G]

△ 생물의 특성

101 ★%% 2024 실시 10월 학평 1 / 생 ፲ (고3)

표는 사람이 갖는 생물의 특성과 예를 나타낸 것이다. (가) 와 (나)는 물질대사. 자극에 대한 반응을 순서 없이 나타낸 것이다.

생물의 특성	બ		
(フト)	ⓐ <u>뜨거운 물체에 손이 닿으면 자신도 모르게 손을</u> <u>때는 반사</u> 가 일어난다.		
(나)	ⓑ 소화 과정을 통해 녹말을 포도당으로 분해한다.		

이에 대한 옳은 설명만을 [보기]에서 있는 대로 고른 것은?

----[보기]-

- ㄱ. (가)는 자극에 대한 반응이다.
- L. (a)의 중추는 숨골이다.
- 다. ⓑ에서 이화작용이 일어난다.

102 **% 2021 실시 9월 학평 2 / 생 I (고2)

그림 (가)와 (나) 중 하나는 말라리아원충을, 다른 하나는 박테리오 파지를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-----[보기]-

- ㄱ. (가)는 유전물질을 갖는다.
- ㄴ. (나)는 박테리오파지이다.
- 다. (가)와 (나)는 모두 세포분열로 증식한다.

🕒 생명과학의 특성과 생명 시스템의 구성 단계

1103 ***

그림은 생명과학의 연구 대상 중 하나인 코끼리 개체를 나타낸 것이

이와 같은 생명과학의 연구 대상으로 옳지 않은 것은?

- ① 하나의 세포로 이루어진 단세포생물
- ② 같은 종의 다수 생물로 이루어진 개체군
- ③ 눈으로 관찰할 수 없는 세포의 미세 구조
- ④ 군집과 환경이 상호작용하는 시스템인 생태계
- (5) 생물 관찰 도구인 현미경을 만들기 위한 금속 재료

생명활동과 에너지

1104 ☆☆☆ 2022 실시 6월 학평 8 / 생 Ⅰ (고2)

그림 (가)는 사람에서 일어나는 물질대사 Ⅰ과 Ⅱ를 (나)는 Ⅰ과 \mathbb{I} 에서 \bigcirc \sim \bigcirc 의 1분자당 에너지양을 비교하여 나타낸 것이다. \bigcirc ~ ②은 포도당, CO₃, ATP, ADP를 순서 없이 나타낸 것이다.

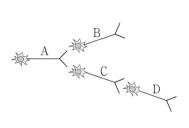
	구분	1분자당 에너지양
	I	(1) < (L)
	II	€ > €
(フト)		(L)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (3점)

----[보기]-

- 기. I 은 이화작용이다.
- ㄴ. Ⅰ과 Ⅱ에서 모두 효소가 이용된다.
- 다 (리)은 호흡계를 통해 몸 밖으로 배출된다

17 2 4 3 7, 5 4 4 4, 5 7, 4, 5

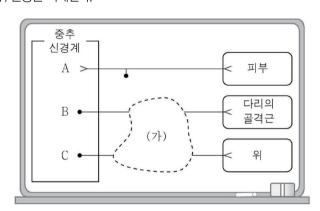


서술형 · 단답형 문제

M93 ***

학력 평가 기출 / 생 I (고2) 변형

그림은 민말이집신경 $A \sim D$ 가 연결된 모습을, 표는 신경 $\bigcirc \sim$ \bigcirc 중 한 지점에 각각 역치 이상의 자극을 1회 주었을 때 활동전위가 발생한 신경의 수를 나타낸 것이다. \bigcirc \sim \bigcirc 은 각각 $A\sim D$ 중 하나 이다


자극을 준 신경	활동전위가 발생한 신경의 수
(7)	1
(L)	a
©	2
2	1

신경 \bigcirc , \bigcirc 에 해당하는 기호 $A \sim D$ 와 \bigcirc 에 해당하는 숫자를 각각 쓰시오 (단답형)

1124 ♠ 고난도

······학력 평가 기출 / 생 I (고2) 변형

그림은 말초신경계에 속하는 신경 $A \sim C$ 를 나타낸 것이다. (가)는 칠판에 그린 신경 B와 C의 일부가 지워진 부분이고. C가 흥분하면 위 운동은 억제된다.

- (1) 말초신경계에 속하는 신경 $A \sim C$ 의 종류를 각각 올바르게 쓰시오 (단답형)
- (2) 신경 B와 C의 (가) 부분에 신경절 존재 유무를 각각 쓰고. 그렇게 판단한 까닭을 쓰시오. 서술형

1125 **♦ 고난도**

··· 내신 기출 변형

표는 시상하부, 뇌하수체전엽, 부신겉질 중 어느 한 부위에 이상이 있는 세 명의 환자 $(7) \sim (\Gamma)$ 의 체내 호르몬 $\bigcirc \sim (\Gamma)$ 의 농도를, 그 림은 호르몬 C의 분비가 정상인보다 낮은 환자 (다)의 호르몬 분비 과정을 나타낸 것이다. \bigcirc \sim \bigcirc 은 각각 $A \sim C$ 중 하나이다. (단, 환자는 이상이 있는 부위를 제외한 다른 부위는 정상이며, 이상이 있는 부위에서의 호르몬 분비 정도는 정상인보다 낮다.)

호르몬 환자	9	©.	©		
(フト)	_	_	_	▲ 되하수체전엽 촉진	
(나)	_	_	+	·	
(⊏∤)	+	_	+	호르몬 C 이상 부위	
(+: 정상인보다 높음, -: 정상인보다 낮음) ^{분비 감소}					

- (1) 환자 (가) ~ (다) 중 뇌하수체전엽에 이상이 있는 환자의 기호를 쓰시오 (단답형)
- (2) 호르몬 \bigcirc \sim \bigcirc 에 해당하는 $A \sim C$ 의 기호를 각각 알맞게 쓰고 그렇게 판단한 까닭을 쓰시오. 서술형

11 26 ☆ 고난도 학력 평가 기출 / 생 ፲ (고3) 변형

표는 200명의 학생 집단을 대상으로 ABO식 혈액형에 대한 응집 원 🗇, 🔾과 응집소 🖒, ②의 유무와 Rh식 혈액형에 대한 응집원 의 유무를 조사한 것이다. 이 집단에는 A형, B형, AB형, O형이 모두 있고. A형인 학생 수가 O형인 학생 수보다 많다. Rh^- 형인 학생들 중 A형인 학생과 AB형인 학생은 각각 1명이다.

구분	학생 수
응집원 ①을 가진 학생	74
응집소 ©을 가진 학생	110
응집원 ⓒ과 응집소 ②을 모두 가진 학생	70
Rh 응집원을 가진 학생	198

- (1) Rh^+ 형이면서 AB형인 학생 수를 구하시오. (단답형)
- (2) 항A 혈청에 응집되는 혈액을 가진 학생 수와 항A 혈청에 응집 되지 않는 혈액을 가진 학생 수를 비교하여 서술하시오. 생물형

* 학력평가 대비 모의고사

[회별 25문항, 제한시간 40분]

- ★ **25문항으로 구성:** 2028학년도 수능 대비
- ★ 2022 개정 교육과정 맞춤 기출 문제로 재구성
- 문항 배점: 2.5점-8문항, 2점-9문항, 1.5점-8문항

1회 6월 학평 대비	범 위	처음부터 ~ I. 생명 시스템의 구성 3. 생태계까지
	구 성	 고2 2025 실시 6월 학력 평가: 6문항 고2 최신 3개년 학력 평가 기출: 4문항 고3 수능 대비 기출(+변형): 15문항
변 2회 위 9월 학평 구 대비 성	처음부터 ~ II. 항상성과 몸의 조절 1. 자극에 대한 반응과 항상성까지	
		・고2 2025 실시 9월 학력 평가: 12문항 ・고2 최신 3개년 평가 기출: 10문항 ・고3 수능 대비 기출(+변형): 3문항
3 회 10월 학평 대비	범 위	처음부터 ~ III. 생명의 연속성과 다양성 2. 유전정보와 생식세포까지
	구 성	• 고2 2024 실시 10월 학력 평가: 9문항 • 고2 최신 3개년 학력 평가 기출: 13문항 • 고3 수능 대비 기출(+변형): 3문항

1회 학력평가 대비 모의고사

•(고2) 2025.6.학평+3개년 학평/(고3) 수능대비기출

• 문항 수 : 25개 • 배점: 50점 • 제한 시간: 40분

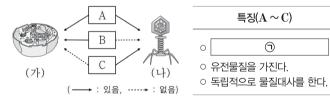
101

2025 실시 6월 학평 1 / 생 ፲ (고2)

다음은 송골매에 대한 설명이다

③ 송골매는 먹이를 포착하면 빠르 게 하강하여 ① 먹이를 낚아채고 곧 바로 위로 솟구쳐 오른다 이러한 비 행이 가능한 이유는 공기 흐름이 빨 라지면 ② 날갯죽지 근처의 깃털들 이 진동하면서 속도를 감지하여 깃 털이 세워져 양력이 증가하기 때문이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (1.5점)


-----[보기]-

- ㄱ. ⑦은 세포로 구성되어 있다.
- L. (L) 과정에서 ATP가 이용된다.
- C (C)은 자극에 대한 반응의 예에 해당한다.

102

2025 실시 6월 학평 2 / 생 1 (고2)

그림은 (γ) 와 (ψ) 가 갖는 특징 $A \sim C$ 의 유무를, 표는 $A \sim C$ 를 순서 없이 나타낸 것이다. (가)와 (나)는 각각 사람의 세포와 바이러 스 중 하나이다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (1.5점)

-----[보기]-

- ㄱ. '독립적으로 물질대사를 한다.'는 A에 해당한다.
- ㄴ. (가)와 (나)는 모두 단백질을 갖는다.
- ㄷ. '숙주세포 밖에서 결정체로 존재한다.'는 ⑤에 해당한다.

1 03

·범위: I - 3. 생태계까지

2023 실시 11월 학평 1 / 생 ፲ (고2)

다음은 빨판상어에 대한 설명이다.

빨판상어는 머리 윗부분에 다른 동물의 몸에 달라붙을 수 있는 흡반 이 있어 적은 힘으로 바다에서 이동 하는 데 유리하다

이 자료에 나타난 생물의 특성과 가장 관련이 깊은 것은? (1.5점)

- ① 항상성
- ② 발생과 성장 ③ 생식과 유전

- ④ 적응과 진화 ⑤ 자극에 대한 반응

104

2022 대비 6월 모평 4 / 생표(고3)

표는 식물의 구성 단계 일부와 예 를 나타낸 것이다. (가) ~ (다)는 기관, 세포, 조직을 순서 없이 나 타낸 것이다.

예
꽃
?
③ 표피조직

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (1.5점)

---[보기]

- ㄱ. (가)는 기관이다.
- ㄴ. 체관세포는 (나)의 예이다.
- □. □은 기본조직계에 속한다.

105

..... 2024 대비 6월 모평 2 / 생 I (고3)

다음은 사람에서 일어나는 물질대사에 대한 자료이다.

- (가) 단백질은 소화 과정을 거쳐 아미노산으로 분해된다.
- (나) 포도당이 세포호흡을 통해 분해된 결과 생성되는 노폐물에는 ①이 있다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (2점)

-----[보기]-

- ㄱ. (가)에서 이화작용이 일어난다.
- ㄴ. 이산화 탄소는 ⊙에 해당한다.
- ㄷ. (가)와 (나)에서 모두 효소가 이용된다.

17 2 5 3 7, 6 4 6, 5 7, 6, 6

💸 차 례

빠른 정답 찾기.....2

Ⅱ 생명 시스템의 구성

A 생물의 특성	4
B 생명과학의 특성과 생명 시스템의 구성 단계	. 14
€ 생명활동과 에너지	. 28
D 기관계의 통합적 작용과 대사성 질환	. 46
E 생태계의 구조와 기능	. 58
F 개체군	. 74
G 군집	. 84

■ 대단원 마무리 문제......95

Ⅲ 생명의 연속성과 다양성

M 검색세, DNA, 유신사 고난도 단원	198
▶ 생식세포 형성의 중요성 고난도 단원	218
○ 생물의 진화	240
P 생물의 분류체계	256
Q 식물과 동물의 분류	266
■ 대단원 마무리 문제	276

Ⅲ 항상성과 몸의 조절

├ 신경자극전도와 시냅스전달 [1등급 단원]	. 108
사람의 신경계	. 132
Ј 항상성 유지	144
K 병원체와 방어작용	. 160
┗ 항원항체반응과 백신	. 171
■ 대단원 마무리 문제	183

03회 10월 학력평가 대비291

ጵ 정답률 표시 :

각 학년에 해당하는 학생들의 정답률임.

빠른 정답 찾기 Xi story 고2 생명과학

Ⅱ 생명 시스템의 구성

▲ 생물의 특성

01 ⑤ 02 ⑤ 03 ⑥ 04 ④ 05 ⑥ 06 ④ 07 ⑥ 08 ⑤ 09 ⑥ 10 ⑥ 11 ④ 12 ④ 13 ④ 14 ③ 15 ③ 16 ③ 17 ④ 18 해설참조 19 해설참조 20 해설참조

🖪 생명과학의 특성과 생명 시스템의 구성 단계

 01 ⑤
 02 ⑥
 03 ⑥
 04 ②
 05 ③
 06 ②
 07 ⑤
 08 ⑥

 09 ①
 10 ③
 11 ⑥
 12 ⑥
 13 ⑥
 14 ④
 15 ⑥
 16 ②

 17 ②
 18 ③
 19 해설참조
 20 해설참조
 21 ④
 22 ⑥

 23 ⑥
 24 ⑥
 25 ②
 26 ⑥
 27 ③
 28 ③

C 생명활동과 에너지

01 ⑤ 02 ⑥ 03 ④ 04 ⑥ 05 ④ 06 ⑥ 07 ③ 08 ⑥
09 ④ 10 ⑥ 11 ⑥ 12 ⑥ 13 ④ 14 ⑥ 15 ① 16 ⑥
17 ④ 18 ③ 19 ⑥ 20 ④ 21 해설 ★조 22 해설 ★조
23 해설 ★조 24 해설 ★조 25 ⑥ 26 ① 27 ⑥ 28 ③
29 ⑥ 30 ⑥ 31 ⑥ 32 ⑥ 33 ③ 34 ③

□ 기관계의 통합적 작용과 대사성 질환

01 ③ 02 ④ 03 ④ 04 ③ 05 ② 06 ③ 07 ③ 08 ③
09 ④ 10 ⑤ 11 ⑥ 12 ⑥ 13 ③ 14 ⑥ 15 ④ 16 ⑤
17 ③ 18 ⑥ 19 ① 20 ⑥ 21 해설참조 22 해설참조

생태계의 구조와 기능

 01 ⑤
 02 ②
 03 ③
 04 ①
 05 ④
 06 ⑤
 07 ③
 08 ①

 09 ⑥
 10 ⑥
 11 ④
 12 ④
 13 ⑥
 14 ②
 15 ①
 16 ①

 17 ②
 18 ④
 19 ③
 20 ②
 21 해설 찬조
 22 해설 찬조

 23 해설 참조
 24 해설 참조
 25 ③
 26 ②
 27 ⑥
 28 ①

 29 ④
 30 ③
 31 ②
 32 ①
 32 ①

F 개체군

01 ④ 02 ① 03 ④ 04 ① 05 ② 06 ⑤ 07 ③ 08 ③ 09 ⑤ 10 ③ 11 ③ 12 ③ 13 ① 14 ③ 15 ④ 16 ① 17 ③ 18 해설참조 19 해설참조 20 해설참조

빠른 정답

G 군집

01② 02① 03③ 04① 05③ 06① 07⑤ 08① 09④ 10④ 11① 12② 13④ 14⑤ 15⑤ 16③ 17① 18해설참조 19해설참조 20해설참조

■ 대단원 마무리 문제

01 ③ 02 ① 03 ⑤ 04 ④ 05 ④ 06 ⑤ 07 ⑤ 08 ⑤ 09 ⑥ 10 ④ 11 ② 12 ④ 13 ④ 14 ⑤ 15 ③ 16 ③ 17 ① 18 ⑥ 19 ⑤ 20 ① 21 ⑥ 22 해설참조 23 해설참조 24 해설참조 25 해설참조

Ⅲ 항상성과 몸의 조절

Ⅰ 신경자극전도와 시냅스전달

01 ① 02 ③ 03 ① 04 ① 05 ④ 06 ① 07 ③ 08 ⑤ 09 ③ 10 ① 11 ① 12 ① 13 ① 14 ⑤ 15 ① 16 ⑤ 17 ② 18 ① 19 ⑤ 20 ④ 21 ④ 22 ⑤ 23 ① 24 ④ 25 ③ 26 ⑤ 27 ③ 28 해설참조 29 해설참조 31 해설참조 32 ③ 33 ① 34 ② 35 ①

Ⅱ 사람의 신경계

01 ① 02 ③ 03 ② 04 ⑤ 05 ④ 06 ③ 07 ④ 08 ②
09 ① 10 ① 11 ④ 12 ② 13 ① 14 ③ 15 ③ 16 ②
17 ① 18 ② 19 ③ 20 ① 21 해설참조 22 해설참조

☑ 항상성 유지

01 ⑤ 02 ③ 03 ③ 04 ① 05 ⑥ 06 ② 07 ⑥ 08 ④
09 ② 10 ③ 11 ③ 12 ④ 13 ② 14 ① 15 ⑤ 16 ②
17 ① 18 ③ 19 ② 20 ⑥ 21 ① 22 ④ 23 ① 24 ②
25 ① 26 ④ 27 ① 28 ② 29 해설참조 30 해설참조

K 병원체와 방어작용

01 ① 02 ③ 03 ③ 04 ② 05 ④ 06 ③ 07 ② 08 ② 09 ② 10 ④ 11 ⑤ 12 ③ 13 ⑤ 14 ④ 15 ⑤ 16 ④ 17 ④ 18 ⑤ 19 해설참조 20 해설참조

■ 항원항체반응과 백신

01 ③ 02 ④ 03 ③ 04 ⑤ 05 ④ 06 ① 07 ④ 08 ③
09 ④ 10 ④ 11 ③ 12 ④ 13 ⑤ 14 ④ 15 해설참조
16 해설참조 17 ① 18 ⑤ 19 ② 20 ④ 21 ⑤ 22 ④
23 ④

■ 대단원 마무리 문제

01 ④ 02 ② 03 ② 04 ① 05 ④ 06 ① 07 ④ 08 ①
09 ③ 10 ④ 11 ⑤ 12 ④ 13 ② 14 ① 15 ① 16 ③
17 ④ 18 ⑤ 19 ① 20 ④ 21 ④ 22 ⑤ 23 해설참조
24 해설참조 25 해설참조 26 해설참고

Ⅲ 생명의 연속성과 다양성

M 염색체, DNA, 유전자

01 ④ 02 ⑤ 03 ④ 04 ⑥ 05 ② 06 ③ 07 ③ 08 ④
09 ④ 10 ③ 11 ⑤ 12 ① 13 ② 14 ③ 15 ② 16 ②
17 ① 18 해설참조 19 해설참조 20 해설참조 21 ①
22 ④ 23 ④ 24 ⑤ 25 ③ 26 ⑤ 27 ② 28 ⑤ 29 ③
30 ③ 31 ① 32 ①

N 생식세포 형성의 중요성

 01 ③ 02 ⑤ 03 ② 04 ② 05 ⑥ 06 ③ 07 ④ 08 ①

 09 ⑥ 10 ⑥ 11 ② 12 ③ 13 ④ 14 ② 15 ③ 16 ②

 17 ① 18 ⑤ 19 ③ 20 ② 21 ② 22 ① 23 ③ 24 ①

 25 ② 26 ③ 27 ④ 28 前世計조 29 前世計조

 30 前世計조 31 前世計조 32 前世計조 33 ③ 34 ④

 35 ② 36 ① 37 ③ 38 ⑥

0 생물의 진화

01 ④ 02 ① 03 ④ 04 ① 05 ② 06 ④ 07 ④ 08 ⑤
09 ⑤ 10 ① 11 ③ 12 ① 13 ⑤ 14 ④ 15 ④ 16 ③
17 ② 18 ④ 19 ② 20 ① 21 해설참조 22 해설참조
23 해설참조 24 해설참조 25 ④ 26 ④ 27 ① 28 ⑤
29 ② 30 ③ 31 ②

P 생물의 분류체계

01⑤ 02④ 03③ 04① 05④ 06② 07② 08⑤ 09⑤ 10③ 11⑤ 12③ 13① 14② 15④ 16① 17③ 18② 19해설참조 20해설참조

Q 식물과 동물의 분류

01 ① 02 ④ 03 ① 04 ① 05 ⑤ 06 ④ 07 ③ 08 ⑤ 09 ④ 10 ⑥ 11 ④ 12 ② 13 ⑥ 14 ⑤ 15 ② 16 ⑥ 17 ① 18 ⑥ 19 해설참조 20 해설참조

■ 대단원 마무리 문제

 01 ⑤
 02 ③
 03 ④
 04 ④
 05 ⑤
 06 ⑤
 07 ④
 08 ③

 09 ④
 10 ④
 11 ④
 12 ①
 13 ③
 14 ②
 15 ⑤

 16 해설참조
 17 해설참조
 18 해설참조
 19 해설참조

〈학력평가 대비 모의고사〉

회 6월 학력평가 대비

2회 9월 학력평가 대비

 01 ⑤
 02 ③
 03 ④
 04 ④
 05 ③
 06 ⑤
 07 ①
 08 ②

 09 ①
 10 ⑤
 11 ①
 12 ④
 13 ②
 14 ④
 15 ④
 16 ①

 17 ③
 18 ①
 19 ①
 20 ⑥
 21 ①
 22 ①
 23 ③
 24 ③

 25 ①

3회 10월 학력평가 대비

 01 ⑤
 02 ⑤
 03 ③
 04 ①
 05 ⑥
 06 ④
 07 ⑤
 08 ①

 09 ③
 10 ⑥
 11 ③
 12 ②
 13 ②
 14 ②
 15 ③
 16 ①

 17 ②
 18 ⑥
 19 ③
 20 ⑥
 21 ④
 22 ②
 23 ②
 24 ③

 25 ①

다음은 어떤 담수어에 대한 자료이다.

민물에 사는 이 담수어는 주 변보다 체액의 농도가 높기 때 문에 농도가 낮은 다량의 오줌 을 배출하여 🗇 체액의 농도를 일정하게 유지한다. ⇒항상성 단세

①에 나타난 생물의 특성과 가장 관련이 깊은 것은?

- ① 구더기는 파리의 알에서 생긴다. 발생과 성장
- ② 짚신벌레는 분열법으로 번식한다. 생식
- ③ 소나무는 광합성을 통해 유기물을 합성한다. 물질대사
- ④ 적록색맹인 어머니로부터 적록색맹인 아들이 태어난다. 유전
- ⑤ 식사 후 호르몬의 작용으로 혈당량을 일정하게 유지한다. 항상성

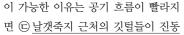
·················· [① 1% ② 0% ③ 0% ④ 0% ⑤ 97%] 2025 실시 9월 학평 1 / 생 I (고2)

☑ 단서+발상

- 단서 생물인 담수어에 대한 자료가 제시되어 있다.
- (발상) 체액의 농도를 일정하게 유지하는 생물의 특성은 항상성임을 추론할 수 있다.
- 적용 보기의 생물들의 특성을 구하는 것부터 문제 풀이를 시작해야 한다.

문제+자료 분석

- 생물은 환경이 변해도 체온, 체내 수분량, 혈당량 등의 체내 상태를 일정하게 유지하려는 성질이 있다. (꿀️ 🖹 ⇒ 항상성
- 민물에 사는 담수어가 농도가 낮은 다량의 오줌을 배출하여 체액의 농도를 일정 하게 유지하는 것은 항상성에 해당한다.


|선택지 분석|

- ① '구더기는 파리의 알에서 생긴다.'는 수정란에서 완전한 개체가 되는 발생에 해당한다.
- ② '짚신벌레는 분열법으로 번식한다.'자신과 닮은 자손을 만드는 생식에 해당한다.
- ③ '소나무는 광합성을 통해 유기물을 합성한다.'는 생명활동에 필요한 물질과 에너지를 얻는 물질대사에 해당한다.
- 4) '적록색맹인 어머니로부터 적록색맹인 아들이 태어난다.'는 어버이의 형질이 자손에게 전달되는 유전에 해당한다.
- ⑤ '식사 후 호르몬의 작용으로 혈당량을 일정하게 유지한다.'는 체내 상태를 일정 하게 유지하려는 항상성에 해당한다.

다음은 송골매에 대한 설명이다.

⊙ 송골매는 먹이를 포착하면 빠르 다세포생물

게 하강하여 ① 먹이를 낚아채고 곧바 ATP를 사용한 근육의 움직임 로 위로 솟구쳐 오른다. 이러한 비행

하면서 속도를 감지하여 깃털이 세워져 양력이 증가하기 때문 이다. → 자극: 빠른 공기의 흐름 / 반응: 깃털이 세워짐

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

- [보기]

- (기) ①은 세포로 구성되어 있다. 모든 생물은 세포로 구성
- (L) (L) 과정에서 ATP가 이용된다. 근육의 움직임 등 생명활동에 ATP가 이용됨
- □ □은 자극에 대한 반응의 예에 해당한다. ⓒ은 자극에 대한 반응의 예

1 7

2 L

③ ¬, ⊏

4 L, E

⑤ 7, ∟, ⊏

🛕 🕦 정답 ⑤ *생물의 특성 ················· [① 1% ② 0% ③ 6% ④ 0% ⑤ 91%] 2025 실시 6월 학평 1 / 생 ɪ (고2)

▲ 단서+발상

- 당시 공기의 흐름이 빨라졌을 때 송골매 깃털의 변화가 제시되어 있다.
- (발생) 제시된 (은)이 자극에 대한 반응의 예임을 추론할 수 있다.
- 적용 생물의 특성을 적용해서 ⑦ ~ ⓒ의 특징을 파악하는 것부터 문제 풀이를 시작 해야 한다.

│문제+자료 분석│

- 송골매는 동물로 다세포생물이다.
- 송골매가 먹이를 낚아채고 위로 솟구치는 비행을 할 때 근육이 움직이며, 이 과 정에서 ATP(생명활동에 직접 사용되는 에너지원)가 사용된다.
- 송골매의 비행에서 공기 흐름이 빨라지는 자극이 주어지면, 깃털이 세워지는 반 응이 일어난다. 자극에 대한 반응은 비교적 짧은 시간 동안 일어나는 생물의 변화

|보기 분석|

- 🕥 🕤(송골매)은 세포로 구성되어 있다.
- 다. 먹이를 낚아채는 ② 과정에서 ATP를 이용한 근육의 움직임이 일어난다.
- 🝙 🖒 🖹 🖒 🖒 그래의 속도 변화가 자극이고, 이에 대해 송골매의 깃털이 세워지 는 것이 반응이다. 생물은 주변 환경의 변화를 자극으로 받아들이고 이에 대해 적절히 반응함으로써 생명활동을 유지하려고 한다.

21 틀렸나? _

- 자극과 반응: 생물은 주변 환경이나 생물체 내부의 변화를 자극으로 받아들이고 이에 대해 적절히 반응한다. 비교적 짧은 시간 동안의 변화에 대해 단기간 내에 반 응하는 사례는 자극에 대한 반응의 예에 해당한다.
- 적응과 진화: 환경에 적합한 특성을 가진 생물이 살아남을 가능성이 커지므로 여 러 세대를 거쳐 생물종 집단 전체의 변화가 일어난다. 생물종 집단 전체가 환경에 적합한 특성을 가지는 사례는 적응과 진화의 예에 해당한다.

다음은 사람에서 나타나는 현상을 나타낸 것이다.

- (가) 물을 많이 마시고 나면 농도가 낮은 오줌이 많은 양으로 배설된다. ➡ 체내 수분량 조절(항상성)
- (나) 밥을 먹은 후에 작은창자에서 포도당이 다량 흡수되면 인슐린이 분비되어 포도당을 글라이코젠으로 합성한다.

단서 ⇒ 혈당량 조절(항상성)

- (1) (가)와 (나)에서 공통적으로 나타나는 생물의 특성을 쓰시오. 단답형
- (2) (가)와 (나)에서 공통적으로 나타나는 생물의 특성을 제시된 현상과 연관지어 각각 서술하시오. (서술형)

🋂 단서+발상

- **단서** 생물의 특성 중 항상성에 대한 예시 (가), (나)가 제시되어 있다.
- (가)의 체내 수분량 조절과 (나)의 혈당량 조절을 보고 항상성임을 추론할 수 있다
- (적용) 생물의 특성을 적용해서 각 현상에서 어떤 방법으로 체내의 항상성을 조절 하고 있는지 파악하는 것부터 문제 풀이를 시작해야 한다.

(1) 정답 항상성

(2) 모범 답안 (가): 물을 마시고 체내 수분량이 많아지면 오줌을 다량 배설해 체내 수분량을 정상 수치로 낮추어 항상성을 유지한다. (나): 밥을 먹은 후 체내 혈당량이 높아지면 포도당을 글라이코젠으 로 합성해 혈당량을 정상 수치로 낮추어 항상성을 유지한다.

문제+자료 분석

- 항상성: 체내 · 외의 환경 변화에 대해 생물이 체내 환경을 정상 범위로 유지하려 는 성직
- (가): 수분이 많은 과일을 먹거나 물을 많이 마셔 체내 수분량이 증가하면 체액 의 농도가 낮아져서 혈장 삼투압이 낮아진다. 그 결과 세포막을 통한 물질의 이 동이 정상적으로 일어나지 않는 등 세포의 기능에 이상이 발생한다.
- 뇌하수체후엽에서 항이뇨호르몬의 분비량이 감소하여 콩팥에서 재흡수되는 물의 양이 줄어(오줌의 양이 많아지며) 혈장 삼투압이 높아진다. (체내 삼투압 조절)
- (나): 음식을 먹어 혈당량이 정상 범위보다 높아지면 이자의 β 세포에서 인슐린 의 분비가 촉진된다.
- 인슐린은 간에 작용하여 포도당을 글라이코젠으로 합성하는 과정을 촉진하고 체세포의 포도당 흡수를 촉진하여 혈당량을 낮춘다. (혈당량 조절)

	채점 기준	배점
(1)	(가)와 (나)에서 공통적으로 나타나는 생물의 특성을 옳게 쓴 경우	30%
(0)	생물의 특성과 (가), (나) 현상을 연관지어 모두 옳게 서술한 경우	70%
(2)	생물의 특성만 또는 (가)와 (나) 중 1가지만 옳게 서술한 경우	30%

A 20 * 바이러스의 생물적 특성 ··········

(1) 정답 적응과 진화(돌연변이)

(2) 모범 답안 · 유전물질인 핵산(DNA 또는 RNA)을 가진다.

• 숙주세포 내에서 핵산을 복제해 증식하며, 이 과정에서 유전 현상이 나타난다.

(가) 바이러스 치료제는 처음에는 효과를 나타내지만, 곧 그 약

다음은 바이러스와 관련된 두 가지 사례를 나타낸 것이다.

물에 대한 저항성을 가진 바이러스가 나타난다.

단사 ⇒ 약물에 저항성을 갖는 바이러스

- (나) 조류 독감 바이러스를 닭에게 주입하였더니 주입된 바이 러스와는 다른 변형된 조류 독감 바이러스가 발견되었다. ➡ 주입된 바이러스와는 다른 변형된 형질을 가진 바이러스
- (1) (가)와 (나)에서 공통적으로 나타나는 바이러스의 생물적 특성은 무엇 인지 쓰시오 (단답형)
- (2) (가)와 (나)에서 공통적으로 나타나는 바이러스의 생물적 특성 외에 다른 생물적 특성을 2가지 서술하시오. 서술형

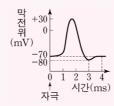
🋂 단서+발상

- (가)는 바이러스 치료제, (나)는 조류독감 바이러스의 변형과 같이 바이러스 와 관련된 두 가지 사례가 제시되어 있다.
- (발상) (가)와 (나) 모두 이전에 없던 형질이 새롭게 발현된 특징으로 보아 바이러스 의 생물적 특성 중 돌연변이임을 추론할 수 있다.
- 적용 생물과 비생물의 차이점을 적용해서 바이러스의 생물적 특성을 파악하는 것 부터 문제 풀이를 시작해야 한다.

문제+자료 분석

- 바이러스 치료제에 저항성을 가지는 바이러스가 나타나는 것과 변형된 조류 독 감 바이러스가 나타난 것은 둘 다 바이러스의 유전자에 돌연변이가 일어났기 때 문이다. ➡ 생물적 특성 중 적응과 진화(돌연변이)에 해당함.
- 돌연변이로 인해 기존에 존재하지 않던 형질인 바이러스 치료제에 저항성을 가 진 바이러스와 변형된 조류 독감 바이러스가 출현하게 되었다.

채점 기준		배점
(1)	(가)와 (나)에서 공통적으로 나타나는 생물의 특성을 옳게 쓴 경우	30%
(2)	돌연변이 외에 바이러스의 생물적 특성 2가지를 모두 옳게 서술한 경우	70%
	돌연변이 외에 바이러스의 생물적 특성 1가지만 옳게 서술한 경우	30%


* 바이러스의 생물적 · 비생물적 특성

생물적 특성	비생물적 특성
유전물질인 핵산(DNA 또는 RNA)을 가진다. 숙주세포 내에서 핵산을 복제해 증식하며, 이 과정에서 유전 현상이 나타난다. 돌연변이가 일어나 새로운 형질이 나타나면서 환경에 적응하고 진화한다.	 세포로 이루어져 있지 않다. 숙주세포 밖에서는 입자(결정체)로 존재한다. 숙주세포 밖에서는 스스로 물질대 사를 하지 못하고 스스로 증식할 수 없다.

 \circ 그림은 $I \sim III$ 의 지점 $d_1 \sim d_5$ 의 위치를, 표는 \bigcirc I과 II의 P에, Ⅲ의 Q에 역치 이상의 자극을 동시에 1회 주고 경과된 시간이 $4 \,\mathrm{ms}$ 일 때 $d_1 \sim d_5$ 에서의 막전위를 나타낸 것이다. P와 Q는 각각 $d_1 \sim d_5$ 중 하나이다.

- I을 구성하는 두 뉴런의 신경자극의 전도 속도는 2v로 같고. ■와 ■의 신경자극의 전도 속도는 각각 3v와 6v이다.
 - ⇒ 신경자극전도 속도는 $I \in \frac{2}{3}$ cm/ms, $II \vdash 1$ cm/ms, $II \vdash 2$ cm/ms
- \circ $\mathbf{I} \sim \mathbf{II}$ 각각에서 활동전위가 발생하였을 때, 각 지점에서의 막전위 변화는 그림 과 같다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단. Ⅰ~Ⅲ 에서 신경자극의 전도는 각각 1회 일어났고, 휴지전위는 $-70 \, \mathrm{mV}$ 이다.) (3점)

- \bigcirc Q는 d_4 이다. P는 d_2 , Q는 d_4
- L. Ⅱ의 신경자극전도 속도는 2 cm/ms이다. Ⅱ 의 신경자극전도 속도는 1 cm/ms
- \Box 이 5 ms일 때 \Box 의 d_5 에서 재분극이 일어나고 있다. \bigcirc 이 $5~\mathrm{ms}$ 일 때 I 의 d_5 에서 탈분극이 일어나고 있음

② L

③ 7. ⊏

(4) L. C

(5) 7, L, E

단서+발상

- [단세] \mathbb{I} 과 \mathbb{I} 에서 d_2 의 막전위 값과 \mathbb{I} 에서 d_4 의 막전위 값이 @로 같다는 것에 주목한다.
- 발상 자극을 준 지점은 신경자극이 도달하는 데 걸린 시간이 0이므로 서로 다른 신 경이더라도 동시에 자극을 준 지점끼리는 막전위 값이 같아야 함을 생각한다.
- 해결 I , II , III에서 자극을 준 지점의 막전위 값은 같으므로 P는 d_2 , Q는 d_4 라고 추론할 수 있어야 고난도 문제를 해결할 수 있다.

문제 해결 과정

step 1 자극을 준 지점 P와 Q 찾기

- 이 문제의 경우 시간을 단축하기 위해 직관적으로 문제 풀이를 하는 것이 중요하다.
- 자극을 준 지점에서는 신경자극이 각 지점에 도달하는 데 걸린 시간이 0이므로 $\frac{1}{100}$ <mark>주고 경과된 시간이 곧 막전위 변화 시간이다.</mark> 따라서 $\frac{1}{100}$ 따라서 $\frac{1}{100}$ 막전위는 $-70 \,\mathrm{mV}$ 으로 같다.

• I 과 II 에서 d_2 의 막전위 값이 ②로 같고, III 에서 d_4 의 막전위 값이 ②이므로 ${
m P}$ 는 d_2 이고, ${
m Q}$ 는 d_4 라고 접근할 수 있다. 또한 ${
m II}$ 에서 자극 지점 d_2 를 중심으 로 d_1 과 d_4 의 거리가 같으므로 두 지점의 막전위 값은 동일해야 하는데, d_1 과 d_4 의 막전위 값이 ⓒ로 같으므로 자극 지점 P는 d_2 이고, Q는 d_4 라고 확정할 수 있다

step 2 I~Ⅲ의 신경자극전도 속도 구하기

- \blacksquare 에서 d_2 의 막전위 값이 $-80\,\mathrm{mV}$ 이므로 자극 지점 $d_4(\mathrm{Q})$ 에서 d_2 까지 신경 자극이 도달한 시간은 4-3=1 ms이며, d_4 에서 d_2 까지 거리는 2 cm이므로 \blacksquare 의 신경자극전도 속도는 $\frac{2}{1}$ =2 cm/ms이다.
- 신경자극전도 속도는 \blacksquare 이 6v=2 cm/ms이므로 $v=\frac{1}{2}$ 이다. 따라서 I 은 $2v = \frac{2}{3}$ cm/ms, II 는 3v = 1 cm/ms이다.

|보기 분석|

¬. Q는 d₄이다. (○)

- 문제 해결 과정의 step 1 을 참고하면, 자극을 준 지점에서는 신경자극이 각 지 점에 도달하는 데 걸린 시간이 0이므로 자극을 주고 경과된 시간이 곧 막전위 변 화 시간이다. 따라서 P와 Q의 막전위는 $-70 \, \text{mV}$ 으로 같다.
- I 과 II에서 $d_{\mathfrak{p}}$ 의 막전위 값이 (\mathbf{a}) 로 같고, III에서 $d_{\mathfrak{p}}$ 의 막전위 값이 (\mathbf{a}) 이므로 P 는 d_2 이고, Q 는 d_4 라고 접근할 수 있다. 또한 II 에서 자극 지점 d_2 를 중심으 로 d_1 과 d_4 의 거리가 같으므로 두 지점의 막전위 값은 동일해야 하는데, d_1 과 d_4 의 막전위 값이 ⓒ로 같으므로 자극 지점 $P = d_2$ 이고, $Q = d_4$ 라고 확정할 수 있다

\sqcup . II의 신경자극전도 속도는 2 cm/ms이다. (\times)

• 문제 해결 과정의 $\frac{1}{2}$ 를 참고하면, II의 신경지극전도 속도는 III의 $\frac{1}{2}$ 배이다. Ⅲ의 신경자극전도 속도는 2 cm/ms이므로 Ⅱ의 신경자극전도 속도는 1 cm/

\Box . \Box 이 5 ms일 때 I 의 d_5 에서 재분극이 일어나고 있다. (\times)

- 문제 해결 과정의 $\frac{2}{3}$ 를 참고하면, I 의 신경자극전도 속도는 $\frac{2}{3}$ cm/ms
- \bigcirc 이 $5\,\mathrm{ms}$ 일 때, d_2 에서 d_5 까지 거리는 $3\,\mathrm{cm}$ 이므로 I 의 d_2 에서 d_5 까지 걸 리는 시간은 4.5 ms이다. 따라서 막전위 변화 시간은 5-4.5=0.5 ms이므로 탈분극이 일어나고 있다.

☆ 정답은 ① ¬이다.

김보경 | 연세대 지구시스템과학과 2023년 입학·광주 서석고졸

이 문제를 처음 봤을 때 막전위 표에 빈칸이 너무 많아 막막하기 만 하고 어려워 보였어. 자극을 주고 경과된 시간을 알려줬고 각 신경의 신경자극전도 속도비를 알려줬으니 하나하나 정보들을 추론해 나갈 수 있어.

을 준 지점의 막전위는 $-70 \,\mathrm{mV}$ 로 같아야겠지.

 $d_{\rm 5}$ 가 P면 \odot 가 $-70\,{
m mV}$ 가 되는데 같은 \odot 값을 갖는 ${
m I}$ 의 $d_{\rm 4}$ 에서 모순이 생 d,라고 먼저 가정해보는 것도 좋아. 일일이 상황을 고려해 한번에 정확한 정보 를 얻으려 하는 것도 좋지만 어느정도 가능성을 열어두고 직관을 이용해 푸는 퍼 즐 맞추기식 풀이도 시간 단축에 도움이 될 수 있거든. 그렇게 하면 Ⅲ의 d_4 가 ⓐ $(=-70\,\mathrm{mV})$ 이므로 Q를 d_4 라고 해볼 수 있지. 먼저 논리적 모순으로 안되는 부분을 찾고 그 후에 특이한 부분을 이용해 가정해보는 거야. 그 후 속도비와 Ⅲ의 $-80\,\mathrm{mV}$ 를 이용해서 모순이 없다면 맞게 푼거야.

다음은 DNA X, DNA Y, mRNA Z에 대한 자료이다.

- 이중 가닥 DNA X는 서로 상보적인 단일 가닥 X_1 과 X_2 로, 이중 가닥 DNA Y는 서로 상보적인 단일 가닥 Y_1 과 Y_2 로 구성되어 있다. X와 Y의 염기 개수는 같다.
- X와 Y 중 하나로부터 Z가 전사되었고, 염기 개수는 X가 Z의 2배이다.
- X₁에서 아데닌(A)의 개수는 210개이다.

150개이다.

- \cdot T: 210개, C: 150개 \cdot T: $\frac{A+G}{C+T} = \frac{A+G}{360} = \frac{2}{3}$ 이므로, A+G: 240개 \cdot X $_2$ 의 총 염기수: 210+150+240=600개
- Y₁에서 구아닌(G)의 개수는 90개이다.
- Y_2 에서 $\frac{\text{퓨런계열 염기의 개수}}{\text{피리미딘계열 염기의 개수}} = \frac{9}{11}$ 이고, 타이민(T)의 개수는 아데닌(A)의 개수의 2배이다.
- \cdot C: 90개, T: 2A개 $\cdot \frac{A+G}{C+T} = \frac{A+G}{90+2A} = \frac{9}{11}$ 이며, 총 염기수가 600개이므로, 90+2A=330개, A+G=270개
- · A: 1207, G: 1507, T: 2407
- Z에서 유라실(U)의 개수는 120개이고, 퓨린계열 염기의 개수는 피리미딘계열 염기의 개수보다 120개 많다.
- 전사 주형 DNA 가닥에 A이 120개이고, C+T의 개수가 A+G의 개수보다 120개 많으므로, Z는 X_o 로부터 전사되었다.

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

-[보기]

- Y에서 사이토신(C)의 개수는 240개이다. Y에서 C의 개수는 Y₁에 150개+Y₂에 90개
- L. Z가 만들어질 때 주형으로 사용된 DNA 가닥은 X_1 이다. Z가 만들어질 때 주형으로 사용된 DNA 가닥은 X_2
- C. 염기 간 수소결합의 총개수는 X에서가 Y에서보다 30개 절략, 염기 간수소결합의 총개수는 X에서가 1470개, Y에서가 1440개
- ② L
- ③ ¬, ⊏

- 4) ١, ١
- ⑤ 7, ᠘, ㄸ
- ❖ DNA 이중 가닥은 서로 상보적인 것을 이용하여 각 가닥의 염기를 추론하는 문제 이다

전사된 mRNA의 유라실(U)의 개수와 퓨린계열 염기의 개수가 피리미딘계열 염기의 개수보다 120개 많다는 것을 이용해 주형으로 사용된 DNA 가닥을 찾는 것이 이 문제 풀이의 핵심 KEY이다.

출제 개념: DNA 전사

│문제 해결 과정│

step 1 DNA X의 분석

- X_1 과 X_2 는 염기가 상보적이므로, X_1 에서 아데닌(A)의 개수가 210개이면 X_2 에서 타이민(T)의 개수도 210개이다. -주의
- X_2 에서 $\frac{\text{ # 린계열 염기의 개수}}{\text{ | III 미딘계열 염기의 개수}} = \frac{A+G}{T+C} = \frac{2}{3}$ 이고, 사이토신(C)의 개수는 150개이므로 A+G=240개이다. 따라서 X_1 과 X_2 의 염기 개수는 각각

600개이고, Y_1 , Y_2 , Z의 염기 개수도 각각 600개이다.

step 2 DNA Y의 분석

- Y_1 에서 구아닌(G)의 개수가 90개이므로, Y_2 에서 사이토신(C)의 개수도 90개이다.
- Y_2 의 염기 개수 600개 중 $\frac{\mathrm{Heln}}{\mathrm{Heln}}$ 열기의 개수 $\frac{\mathrm{Heln}}{\mathrm{Heln}}$ $\frac{\mathrm{Heln}}{\mathrm{Heln}}$ $\frac{\mathrm{Heln}}{\mathrm{Heln}}$ $\frac{\mathrm{Heln}}{\mathrm{Heln}}$ $\frac{\mathrm{Heln}}{\mathrm{Heln}}$
- A+G=270개, T+C=330개이다. 따라서 타이민(T)의 개수는 330-90=240개이다.
- 타이민(T)의 개수는 아데닌(A)의 개수의 2배이므로 아데닌(A)의 개수는 120개이고, 구아닌(G)의 개수는 270-120=150개이다. 따라서 Y_1 에서 사이토신 (C)의 개수는 150개이다.

|보기 분석|

\neg . Y에서 사이토신(C)의 개수는 240개이다. (\bigcirc)

• \mathbf{Y}_1 에서 사이토신(C)의 개수는 150개, \mathbf{Y}_2 에서 사이토신(C)의 개수는 90개이므로 Y에서 사이토신의 개수는 240개이다.

$\mathsf{L}.\ \mathbf{Z}$ 가 만들어질 때 주형으로 사용된 \mathbf{DNA} 가닥은 \mathbf{X}_1 이다. $(\mathbf{ imes})$

- Z에서 유라실(U)의 개수는 120개이고, (퓨린계열 염기의 개수)=(피리미딘계열 염기의 개수)+120이므로 A+G=U+C+120이다. 또, Z의 염기 개수가 A+G+U+C=600개이므로, 사이토신(C)의 개수는 120개이고, A+G=360개이다.
- X_1, X_2, Y_1, Y_2 중에서 T+C=360개인 가닥은 X_2 이므로 Z가 만들어질 때 주형으로 사용된 DNA 가닥은 X_2 이다.

\Box . 염기 간 수소결합의 총개수는 X에서가 Y에서보다 30개 적다. (\times)

- Z에서 유라실(U)의 개수가 120개이므로 X_2 에서 아테닌(A)의 개수는 120개이다. X_2 에서 A+T=330개이고, G+C=270개이므로 X에서 염기 간 수소결합의 총개수는 $330\times2+270\times3=1470$ 개이다.
- Y_2 에서 A+T=360개이고, G+C=240개이므로 Y에서 염기 간 수소결합의 총개수는 $360\times2+240\times3=1440$ 개이다. 따라서 염기 간 수소결합의 총개수는 X에서가 Y에서보다 30개 많다.

♡ 정답은 ① ¬이다.

문제 풀이 (꿀॥

 DNA 한 가닥에서 [염기의 개수]와 $[\frac{\mathrm{A}+\mathrm{G}}{\mathrm{T}+\mathrm{C}}$ 의 비]가 주어졌을 때 $\mathrm{A}+\mathrm{G}$ 염기 수와 $\mathrm{T}+\mathrm{C}$ 염기 수를 쉽게 구할 수 있어야 문제 풀이가 가능하다.

제시된 문제에서 Y_2 의 경우 염기의 개수가 600개이고 $\frac{A+G}{T+C} = \frac{9}{11}$ 이므로,

A+G 염기 수는 $600 imes \frac{9}{(9+11)} = 270$ 개이고, T+C 염기 수는 $600 imes \frac{11}{(9+11)} = 330$ 개이다.

김재서 | 연세대 산업공학과 2021년 입학 · 서울 양정고 졸

나는 실전에서 이 문제가 나올 때 시간이 꽤 걸리는 유형임을 알기에 풀지 않고 넘어가서 다른 문제부터 풀었어. 자신이 취약한 파트는 나중에 풀어서 다른 문제를 풀 시간을 확보하는 것이 좋을 것 같아. 먼저 이 문제를 풀 때 세로에 X_1, X_2, Y_1 ,

 Y_2 , Z를 쓰고 가로에 A, G, C, T, U을 표 형태로 쓰는 것이 가장 편한 것 같아. 이런 문제는 정보량이 많아 무턱대고 쓰다 보면 혼잡해지거든. 또한 DNA의 상보성을 이용하여 적을 수 있는 정보는 최대한 많이 적는 것이 좋아. 예를 들어 X_1 의 G 개수만 알려줬지만 X_2 의 C 개수를 알 수 있는 거지. 여기서 중요한 것은 Z는 전사된 RNA이기 때문에 U을 갖고 염기 개수가 4가닥 중 하나와 U개수 빼고 다 똑같다는 점이야. 이를 이용하면 시간이 오래 걸리더라도 문제는 풀리더라고~

대단원 마무리 문제

I. 생명 시스템의 구성 [A~G]

표는 사람이 갖는 생물의 특성과 예를 나타낸 것이다. (가)와 (나)는 물질 대사, 자극에 대한 반응을 순서 없이 나타낸 것이다.

생물의 특성	ଜା
(가) 자 극 에 대한 반응	ⓐ 뜨거운 물체에 손이 닿으면 자신도 모르게 손을 떼는 반사가 일어난다. <mark>척수반사(희피반사</mark>)
(나) 물질대사	ⓑ 소화 과정을 통해 녹말을 포도당으로 분해한다.

이에 대한 옳은 설명만을 [보기]에서 있는 대로 고른 것은?

[보기]

- (가)는 자극에 대한 반응이다. (가)의 예: 척수반사 ➡ (가)는 자극에 대한 반응
- ㄴ. @의 중추는 숨골이다. 척수
- ⑤에서 이화작용이 일어난다. 큰 분자인 녹말이 작은 분자인 포도당으로 분해됨

단서+발상

(단서) 녹말을 포도당으로 분해하는 생물의 특성이 제시되어 있다.

(발생) 큰 분자를 작은 분자로 분해하는 것은 물질대사(이화작용)임을 추론할 수 있다.

·············· [① 1% ② 0% ③ 83% ④ 0% ⑤ 13%] 2024 실시 10월 학평 1 / 생 I (고3)

(책용) 생물의 특성을 적용해서 주어진 예를 파악하는 것부터 문제 풀이를 시작 해야 하다

문제+자료 분석

- (a)는 척수가 중추인 회피반사이다.
 - ➡ 뜨거운 물체나 뾰족한 물체에 신체가 닿는 자극이 주어졌을 때 즉각적으로 근육이 수축하여 위험한 물체로부터 회피하는 반응이다.
- ⓑ는 생명체 내에서 물질을 합성하거나 분해하는 물질대사의 예이다.
- → 큰 분자인 녹말이 작은 분자인 포도당으로 분해되는 것은 물질대사 중 이화 작용에 해당한다.

|보기 분석|

- (가)는 자극에 대한 반응이다. 신경계와 내분비계는 자극에 대해 적절히 반응하도록 함으로써 우리 몸의 항상성을 유지하는 데 중요한 역할을 한다.
- L. @의 중추는 척수이다. 척수는 무릎반사, 배뇨반사, 회피반사 등을 조절하는 중추시경이다.
- ⑤에서 큰 분자인 녹말이 작은 분자인 포도당으로 분해되는 이화작용이 일어 난다. 이화작용은 에너지를 방출하는 발열반응이며, 이렇게 방출된 에너지를 생명활동에 이용한다.

* 생물의 특성

- 세포로 구성됨: 구조적·기능적 기본 단위
- 물질대사: 물질을 합성하는 동화작용, 물질을 분해하는 이화작용
- 자극에 대한 반응과 항상성
- 생식과 유전: 어버이의 형질을 물려받은 자손을 만듦
- 발생과 성장: 성체가 되며 몸의 구조가 복잡하게 분화됨
- 적응과 진화: 환경에 적합한 몸의 구조와 기능을 갖추고, 오랜 시간에 걸쳐 집단 전체의 변화가 일어남

····· [① 81% ② 2% ③ 13% ④ 1% ⑤ 1%] 2021 실시 9월 학평 2 / 생 I (고2)

그림 (가)와 (나) 중 하나는 말라리아원충을, 다른 하나는 박테리오파지를 나타낸 것이다.

(フト) **(フト) →** HトOLZ

박테리오파지 (가) ➡ 바이러스: 단백질 껍질과 유전물질로 구성 말라리아 원충 (나) ➡ 원생생물 (단세포생물)

이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은?

-[보기]

- (가)는 유전물질을 갖는다. (가)와 (나) 모두 유전물질을 가짐
- □. (사)는 박테리오파지이다.(가)는 박테리오파지, (나)는 말라리아 원충
- 다. (가)와 (나)는 보두 세포분열로 증식한다. (나)만세포분열로 증식

2) L

③ ¬, ⊏

4) L, E

⑤ 7, ∟, ⊏

☑ 단서+발상

- (나)의 세포소기관으로 핵이 제시되어 있다.
- 학이 있는 것으로 보아 (나)는 원생생물인 말라리아 원충, (가)는 박테리오파 지임을 추론할 수 있다.
- 책용 바이러스와 생물의 특성을 적용해서 (가)와 (나)를 구하는 것부터 문제 풀이를 시작해야 하다

│문제+자료 분석│

- (7): 단백질 껍질과 유전물질로 이루어진 박테리오파지다. 박테리오파지는 세포 구조로 되어 있지 않은 바이러스다.
- (나): 핵 등의 세포소기관을 가지고 있으므로 단세포 원생생물인 말라리아 원충이다. (물) 말라리아 원충은 생물의 특성을 모두 가지고 있다.

|보기 분석|

- 에 세균을 숙주로 하는 바이러스인 박테리오파지 (가)와 단세포 원생생물인 말라리아 원충 (나)는 모두 유전물질을 갖는다.
- ┗. (가)는 세포 구조로 되어 있지 않은 박테리오파지고 (나)는 단세포 원생생물인 말라리아 원충이다.
- **ㄷ.** 바이러스인 (가)는 세포 구조로 되어 있지 않으므로 세포분열을 하지 않는다. 따라서 단세포 원생생물인 (나)만 세포분열로 증식한다.

- 바이러스는 핵 등의 세포소기관을 가지지 않는다.
- 주어진 모식도에 핵이 표시된 (나)는 바이러스가 아니며 세포로 구성된 생물이다.
- 말라리아 원충은 핵을 가지고 있는 단세포 원생생물이다.

[정답률 91%] **정답 ⑤** * 생물의 특성 ·····[정답률 91%]

|보기 분석|

A 02 해설 참조

- (송골매)은 세포로 구성되어 있다.
- (L) 먹이를 낚아채는 (L) 과정에서 ATP를 이용한 근육의 움직임이 일어난다.
- ©에서 공기 흐름의 속도 변화가 자극이고, 이에 대해 송골매의 깃털이 세워지는 것이 반응이다. 생물은 주변 환경의 변화를 자극으로 받아들이고 이에 대해 적절히 반응함으로써 생명활동을 유지하려고 한다.

[] **02 정답 ④ *** 생물과 비생물······[정답률 90%]

보기 분석

A 11 해설 참조

- **기.** '독립적으로 물질대사를 한다.'는 사람의 세포 (가)만 가지는 특성으로 B에 해당한다.
- (가)와 (나) 모두 핵산과 단백질을 가진다. 세포에는 다양한 효소 단백질과 세포막 단백질 등이 있고, 바이러스는 단백질 껍질이 있다.
- (도) '숙주세포 밖에서 결정체로 존재한다.'는 바이러스 (나)만 가지는 특성이므로 (국)(C)에 해당한다.

1 03 정답 ④ * 생물의 특성·····[정답률 96%]

| 선택지 분석 |

A 06 해설 참조

- ① 생명체 안의 환경을 안정하게 유지하려고 하는 특성을 항상성이라고 한다.
- ② 몸의 구조가 복잡하게 분화하고 몸이 자라 완전한 개체가 되어가는 과정을 발생과 성장이라고 한다.
- ③ 어버이의 형질을 닮은 자손을 만드는 과정을 생식과 유전이라고 한다.
- ④ 적응과 진화는 환경에 적합한 몸의 형태를 가지도록 생물종 집단의 변화가 일어난 것이다.
 - 따라서 빨판상어의 몸의 형태가 바다 환경에 살아남기에 적합한 것은 적응과 진화에 해당한다.
- ⑤ 외부 환경의 변화나 몸 안의 변화를 자극으로 받아들이고 그에 적절하게 반응 하여 생명 현상을 유지하는 것을 자극에 대한 반응이라고 한다.

[3] **04** 정답 ③ * 식물의 구성 단계 ······[정답률 80%]

|보기 분석|

B 28 해설 참조

- → 식물에서 뿌리, 줄기, 잎, 꽃, 열매는 기관의 예이므로, (가)는 기관이다.
- (나)는 세포이므로, 체관세포는 (나)의 예이다.
- 식물의 조직계는 표피조직계, 기본조직계, 관다발조직계로 구분된다.
 표피조직은 기본조직계가 아닌 표피조직계에 속한다.

1 05 정답 ⑤ * 물질대사·····[정답률 90%]

|보기 분석|

C 06 해설 참조

- □ 크고 복잡한 단백질이 소화 과정을 거쳐 작고 간단한 아미노산으로 분해되는 이화작용이다. (가)에서 이화작용이 일어난다.
- (L) 세포호흡 결과 생성된 노폐물은 이산화 탄소와 물이다. 이산화 탄소는 ①에 해당하다
- 호화와 세포호흡은 모두 물질대사에 속한다. 물<mark>질대사에는 효소(생체촉매)가</mark> 이용된다. 물말

[정답률 81%]

|보기 분석|

C 11 해설 참조

- 7. ②은 이화작용, ⑥은 동화작용이다.
- (L) (a)는 암모니아, (b)는 이산화 탄소이다.
- (나)는 ATP와 ADP가 전환되는 과정이다. ATP와 ADP의 전환 과정은 효소가 이용되고 에너지가 출입하는 물질대사 과정이다.

[정답률 75%]

|보기 분석|

🔃 02 해설 참조

- ┓. (가)는 포도당, 질소 노폐물을 생성하는 (나)는 아미노산이다.
- ② 실소 노폐물이 요소로 전환되는 ③ 과정은 간에서 일어난다. 간은 배설계가 아니라 소화계이다.

에 포호흡 결과 발생한 물의 일부는 배설계를 통해서 오줌의 형태로 몸 밖으로 배출되고, 다른 일부는 호흡계를 통해서 수증기의 형태로 몸 밖으로 배출된다.

[정답률 88%]

|보기 분석|

D 14 해설 참조

- 물질대사 이상에 의해 발생하는 질병을 모두 통틀어 대사성 질환이라고 한다.
- A에서 ① 상태는 고혈당을 의미한다. 고혈당 상태가 지속되면 당뇨병이 발생할 수 있다.
- A는 고혈압, 고지혈증을 가지고 있으므로 B보다 심혈관계 질환이 발생할 가능성이 높다.

1 09 정답 ⑤ * 생명과학의 통합적 특성·····[정답률 77%]

| 선택지 분석 |

B 01 해설 참조

⑤ 학생 A: 물총새 깃털의 케라틴 미세구조 연구와 다른 학문 분야인 광소자 기술이 연계된 사례이다. ➡ 옳음

학생 B: 철새의 이동 연구와 다른 학문 분야인 위치 추적 장치 기술이 연계된 사례이다. ➡ 옳음

학생 C: 생태계의 개체수 변화 연구와 다른 학문 분야인 통계학이 연계된 사례이다. ➡ 옳음

110 정답 ⑤ * 세포호흡과 ATP[정답률 81%]

|보기 분석|

C 14 해설 참조

- **ㄱ.** 마이토콘드리아에서 일어나는 세포호흡은 포도당과 산소가 반응물로 작용해서 생성물인 이산화 탄소와 물로 분해되며 에너지가 방출된다. 따라서 세포호흡에 반응물인 \bigcirc 은 세포호흡 시 포도당과 함께 반응하는 O_2 이다.
- (L) 세포호흡 시 방출된 에너지(@)의 일부는 (나)(ATP)에 저장되고 나머지는 열로 방출된다. @의 일부는 (나)가 합성되는 데 이용된다.
- (나)(ATP)에 저장된 에너지는 인산 결합이 끊어지면서 ATP가 ADP와 무기 인산으로 분해될 때 방출되어 생명활동에 이용된다.

1 1 정답 ③ * 효소의 특징과 활성화에너지 ………[정답률 84%]

|보기 분석|

C 33 해설 참조

- ♠ A는 효소이고, 효소의 주성분은 단백질이다.
- (L) B는 기질이고, 기질은 효소(A)의 활성부위에 결합한다.
- ┎. (나)에서 효소가 없을 때 이 반응의 활성화에너지는 ⑤이며, 효소가 있으면 활성화에너지가 감소한다.