

공통수학 2

수력충전을 공부하면...

- 수학의 원리를 스스로 터득하여 자신감을 회복할 수 있습니다.
- 수학의 흥미를 잃은 학생에게 문제를 푸는 재미를 느끼게 합니다.
- 개념과 수능 수학 실력을 위한 연산 능력을 동시에 정복할 수 있습니다.

11 대단원 개념 – 한 눈에 보기

단원 전체 중요 개념의 A to Z를 연결하여 한 눈에 볼 수 있도록 정리하였습니다.

두 점 사이의 거리

- 수직선 위의 두 점 $\mathbf{A}(x_1)$, $\mathbf{B}(x_2)$ 사이의 거리 $\overline{\mathbf{A}\mathbf{B}}$ = $|x_2-x_1|=|x_1-x_2|$
- 좌표평면 위의 두 점 $A(x_{\scriptscriptstyle 1},y_{\scriptscriptstyle 1}), B(x_{\scriptscriptstyle 2},y_{\scriptscriptstyle 2})$ 사이의 거리

 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

선분의 내분점

- 수직선 위의 선분의 내분점
- ・선분 AB를 m : n(m>0,n>0)으로 내분하는 점 P의 좌표: $P\Big(\frac{mx_2+nx_1}{m+n}\Big)$
- 선분 AB의 중점 M의 좌표: $M(\frac{x_1+x_2}{2})$
- 좌표평면 위의 선분의 내분점
- 선분 AB를 m : n(m>0, n>0)으로 내분하는

직선의 방정식

- 점과 기울기 점 (x₁, y₁)을 지나
 방정식: y-y₁=
- 서로 다른 두 점 $(x_1, y_1), (x_2,$ ① $x_1 \neq x_2$ 일
 - ② x₁=x₂일
- x절편, y절편 x절편이 a, y절단 $\frac{x}{a} + \frac{y}{b} = 1 \text{ (단}$

일차방정식 ax+by+c=

▼ x, y에 대한 일차방정식 ax+by+
 직선의 방정·
 ☆ 중요 대수식으로도 표현할

기하학적 접근도 할

정전옥 지나는 진선의 방정신

2 개념 정리

반드시 알아야 하는 기본적인 수학 개념과 원리가 쉽게 설명되어 있습니다. 실제 연산 문제에 유용하게 적용하는 수학적 내용들을 첨삭으로 자세히 설명하였습니다.

- 개념의 이해를 돕기 위한 적절한 예를 제시
- 🏴 틀리기 쉬운 개념 짚어주기
- **참고** 개념을 보충 설명하기

25 '모든' 이나 '어떤'이 있는 명저

- (1) '모든' 이나 '어떤'을 포함한 명제의 참, 거짓 전체집합 U에 대하여 조건 p의 진리집합을 P라 하자.
 - ① '모든 x에 대하여 p이다.' 진리집합 P=U (참)

진리집합 $P \neq U$ (거짓)

조건을 만족시키지 않는 반례가 하나라도 존재하면 거짓이다.

② '어떤 x에 대하여 p이다.'

진리집합 $P \neq \emptyset$ (참)

③ 개념 이해 + 기초 유형 연산

유형별로 나누어 가장 기본적인 연산 문제를 반복적으로 풀 수 있어 개념을 확실하게 이해할 수 있도록 하였습니다.

• 빈칸 채우기: 풀이 과정에 있는 빈칸 채우기를 통해 문제해결의 기본 원리를 터득할 수 있습니다.

유형 28 좌표축에

유형 10 두 선분의 길이의 제곱의 합의 최솟갑

[01-06] 직선의 빙

01 점(1,2)를 기

[01-04] 두 점 A, B와 x축 또는 y축 위의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값을 구하여라

01 A
$$(1, -2)$$
, B $(-4, -1)$, P $(a, 0)$

 $\overline{AP}^2 + \overline{BP}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표가 (a, 0)이므로

02 점
$$(1, 2)$$
를 $\overline{AP}^2 + \overline{BP}^2 = (a-1)^2 + \{0-(-2)\}^2 + \{a-(-4)\}^2 + \{0-(-1)\}^2$

$$=2a^2+6a+22=2(a+1)^2+1$$

4 개념 체크

각 유형별 학습의 마지막에 개념을 다시 한 번 체크할 수 있는 코너입니다.

개념을 확실히 오래도록 기억할 수 있게 해줍니다.

(개념 체크

14 다음 빈칸에 알맞은 것을 써넣어라.

- (1) 삼각형의 []: 삼각형의 세 중선의 교점
- (2) 삼각형의 무게중심은 세 중선을 각 꼭짓점으로부터 로 내분한다 각각 [
- (3) 세 점 $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ 의 무게중심 G의 좌표는

5 단원 마무리 평가

공부한 단원 개념을 학교 시험에서 출제되는 기본 문제로 풀어보도록 구성했습니다. 따로따로 배웠던 개념과 원리를 여러 개념의 흐름 속에서 하나로 연결하는 능력을 향상시킬 수 있습니다.

학교시험 단원 마무리 평가

01 수직선 위의 두 점 사이의 12 삼2

01

수직선 위의 두 점 $\mathbf{A}(2)$, $\mathbf{B}(x)$ 에 대하여 $\overline{\mathbf{AB}}{=}5$ 를 만족시키는 x의 값의 합은?

- 1)2 **4** 5
- ② 3 (5) 6
- (3) 4

05

세 점 A(1, 3), B(3, 5), $\overline{AC} = \overline{BC}$ 일 때, a의 값은?

- 1 (4) 4
- ⑤ 5

② 2

Ⅱ 도형의 방정식

1. 평면좌표

01 수직선 위의 두 점 사이의 거리	10
02 좌표평면 위의 두 점 사이의 거리	12
03 두 점에서 같은 거리에 있는 점 P의 좌표	_14
04 두 선분의 길이의 합의 최솟값	16
05 두 선분의 길이의 제곱의 합의 최솟값	18
06 세 변의 길이에 따른 삼각형의 모양	
결정하기	20
07 좌표를 이용한 도형의 성질	22
08 선분의 내분점	23
09 좌표평면 위의 선분의 내분점	24
10 삼각형의 무게중심	26
11 사각형의 중점의 활용	28
12 삼각형의 내각의 이등분선	29
* 단원 마무리 평가	30
2. 직선의 방정식	
	34
13 직선의 방정식	37
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식	37
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건	37
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이	37
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형	37
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형 18 두 직선의 위치 관계	
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형 18 두 직선의 위치 관계	37 38 39 41 43 47
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형 18 두 직선의 위치 관계	37 38 39 41 43 47
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형 18 두 직선의 위치 관계 19 세 직선의 위치 관계 20 선분의 수직이등분선의 방정식 21 두 직선의 교점을 지나는 직선	37 38 39 41 43 47 49
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax + by + c = 0$ 이 나타내는 도형 18 두 직선의 위치 관계 19 세 직선의 위치 관계 20 선분의 수직이등분선의 방정식 21 두 직선의 교점을 지나는 직선 22 점과 직선 사이의 거리	37 38 39 41 43 47 49 50
13 직선의 방정식 14 좌표축에 평행 또는 수직인 직선의 방정식 15 세 점이 한 직선 위에 있을 조건 16 도형의 넓이를 이등분하는 직선의 방정식 17 일차방정식 $ax+by+c=0$ 이 나타내는 도형 18 두 직선의 위치 관계 19 세 직선의 위치 관계 20 선분의 수직이등분선의 방정식 21 두 직선의 교점을 지나는 직선 22 점과 직선 사이의 거리	37 38 39 41 43 47 49 50 52 54

* 단원 마무리 평가

3. 원의 방정식

26	원의 방정식	64
27	x축 또는 y 축에 접하는 원의 방정식	66
28	x축과 y 축에 동시에 접하는 원의 방정식	69
29	이차방정식 $x^2+y^2+Ax+By+C=$	00
	나타내는 도형	.70
30	그 외의 도형의 방정식	72
31	원과 직선의 위치 관계	.75
32	현의 길이	.78
33	원의 접선의 길이	.79
34	원 위의 점과 직선 사이의 거리의	
	최대 · 최소	.80
35	기울기가 주어진 원의 접선의 방정식	81
36	원 위의 점에서의 접선의 방정식	.83
37	원 밖의 한 점이 주어진 접선의 방정식	.84
*	단원 마무리 평가	.86
4.	도형의 이동	
38	점의 평행이동	90
39	도형의 평행이동	92
40	점의 대칭이동	96
41	도형의 대칭이동	101
42	도형의 평행이동과 대칭이동	108
43	점에 대한 대칭이동	111

44 직선에 대한 대칭이동....

합의 최솟값

45 대칭이동을 이용한 선분의 길이의

* 단원 마무리 평가 _____119

113

115

Ⅲ 집합과 명제

1. 집합의 뜻과 표현

01 집합과 원소	126
02 집합의 표현	128
03 집합의 원소의 개수	131
04 부분집합	134
05 서로 같은 집합과 진부분집합	138
06 부분집합의 개수	140
07 특정한 원소를 갖는 부분집합의 개수	142
* 단원 마무리 평가	144

2. 집합의 연산

08 합집합과 교집합	148
09 합집합과 교집합의 성질	150
10 서로소	151
11 여집합과 차집합	153
12 여집합과 차집합의 성질	155
13 집합의 연산 법칙	158
14 드모르간의 법칙	165
15 배수의 집합의 연산	168
16 유한집합의 원소의 개수	170
17 유한집합의 원소의 개수의 활용	173
* 단원 마무리 평가	174

Ⅲ 함수와 그래프

3. 명제

18 명제와 조건	178
19 조건과 진리집합	180
20 명제의 부정	182
21 조건의 부정	183
$oldsymbol{22}$ 조건 ' p 또는 q '와 ' p 그리고 q '	185
23 명제 $p \longrightarrow q$ 의 참, 거짓	187
24 명제와 진리집합 사이의 관계	189
25 '모든'이나 '어떤'이 있는 명제	192
26 '모든'이나 '어떤'이 있는 명제의 부정	195
* 단원 마무리 평가	196

4. 명제의 역과 대우

27 명제의 역과 대우	200
28 삼단논법	203
29 충분조건, 필요조건, 필요충분조건	204
30 명제의 증명	208
31 절대부등식	210
32 부등식의 증명에 이용되는 실수의 성질	21
33 여러 가지 절대부등식	213
34 절대부등식의 활용	215
* 단워 마무리 평가	216

1. 함수

01 대응과 함수	224
02 함수의 정의역, 공역, 치역	226
03 함숫값	228
04 서로 같은 함수	231
05 함수의 그래프	233
06 함수의 그래프의 판별	234
07 일대일함수와 일대일대응	235
08 일대일함수와 일대일대응의 그래프의 판별	237
09 항등함수와 상수함수	239
10 여러 가지 함수의 개수	241
* 다워 마무리 평가	244

2. 합성함수와 역함수

11 합성함수	248
12 합성함수의 성질	252
13 합성함수 <i>f</i> "의 추정	255
14 합성함수의 그래프	256
15 역함수	258
16 역함수가 존재하기 위한 조건	260
17 역함수 구하기	262
18 역함수의 성질	264
19 역함수의 그래프	267
* 단원 마무리 평가	269

3. 유리식과 유리함수

20 유리식	272
21 유리식의 사칙연산	274
22 여러 가지 유리식의 계산	275
23 비례식	277
24 유리함수	278
25 유리함수 $y=\frac{k}{2}(k\neq 0)$ 의 그래프	279

26 유리함수 $y = \frac{k}{x-p} + q(k \neq 0)$ 9	<u> </u>
그래프	281
${f 27}$ 유리함수 $y={ax+b\over cx+d}$ 의 그래프	285
28 유리함수의 미정계수 구하기	288
29 유리함수의 최댓값, 최솟값	290
30 유리함수의 그래프와 직선의 위치 관계	291
31 유리함수의 역함수 구하기	293
32 유리함수의 합성함수와 역함수	294
* 다워 마무리 평가	295

4. 무리식과 무리함수

33 구디식	
34 무리식의 계산	300
35 무리함수	301
36 무리함수 $y = \pm \sqrt{ax}(a \neq 0)$ 의 그리	내프
	302
37 무리함수의 그래프의 대칭이동	304
38 무리함수 $y = \sqrt{a(x-p)} + q(a=0)$	⊨ 0)
의 그래프	305
39 무리함수 $y = \sqrt{ax+b} + c(a \neq 0)$)의
그래프	308
40 무리함수의 미정계수 구하기	311
41 무리함수의 최댓값, 최솟값	312
42 무리함수의 그래프와 직선의 위치 관계	313
43 무리함수의 역함수 구하기	315
44 무리함수의 합성함수와 역함수	316
45 무리함수의 그래프와 역함수의	
그래프의 교점	317
* 단원 마무리 평가	318

Day	학습 내용	페이지	틀린 문제 / 헷갈리는 문제 번호 적기	학습 날찌	+	복습 날	짜
01	☑ 도형의 방정식 01~04	10~17		월	일	월	일
02	05~08	18~23		월	일	월	일
03	09~12	24~29		월	일	월	일
04	단원 마무리 평가	30~33		월	일	월	일
05	13~17	34~42		월	일	월	일
06	18~21	43~51		월	일	월	일
07	22~25	52~58		월	일	월	일
08	단원 마무리 평가	59~63		월	일	월	일
09	26~31	64~77		월	일	월	일
10	32~37	78~85		월	일	월	일
11	단원 마무리 평가	86~89		월	일	월	일
12	38~41	90~107		월	일	월	일
13	42~45	108~118		월	일	월	일
14	단원 마무리 평가	119~122		월	일	월	일
15	Ⅲ 집합과 명제 01~03	126~133		월	일	월	일
16	04~07	134~143		월	일	월	일
17	단원 마무리 평가	144~147		월	일	월	일
18	08~11	148~154		월	일	월	일
19	12~15	155~169		월	일	월	일
20	16~17	170~173		월	일	월	일
21	단원 마무리 평가	174~177		월	일	월	일
22	18~22	178~186		월	일	월	일
23	23~26	187~195		월	일	월	일
24	단원 마무리 평가	196~199		월	일	월	일
25	27~29	200~207		월	일	월	일
26	30~34	208~215		월	일	월	일
27	단원 마무리 평가	216~220		월	일	월	일
28	Ⅲ 함수와 그래프 01~05	224~233		월	일	월	일
29	06~10	234~243		월	일	월	일
30	단원 마무리 평가	244~247		월	일	월	일
31	11~14	248~257		월	일	월	일
32	15~19	258~268		월	일	월	일
33	단원 마무리 평가	269~271		월	일	월	일
34	20~24	272~278		월	일	월	일
35	25~27	279~287		월	일	월	일
36	28~32	288~294		월	일	월	일
37	단원 마무리 평가	295~297		월	일	월	일
38	33~36	298~303		월	일	월	일
39	37~40	304~311		월	일	월	일
40	41~45	312~317		월	일	월	일
41	단원 마무리 평가	318~320		월	일	월	일

도형의 방정식

1 평면좌표

- 01 수직선 위의 두 점 사이의 거리
- ✓ 02 좌표평면 위의 두 점 사이의 거리
 - 03 두 점에서 같은 거리에 있는 점 P의 좌표
 - 04 두 선분의 길이의 합의 최솟값
 - 05 두 선분의 길이의 제곱의 합의 최솟값
 - 06 세 변의 길이에 따른 삼각형의 모양 결정하기
 - 07 좌표를 이용한 도형의 성질
 - 08 선분의 내분점
- **▼ 09** 좌표평면 위의 선분의 내분점
 - 10 삼각형의 무게중심
 - 11 사각형의 중점의 활용
 - 12 삼각형의 내각의 이동분선

2 직선의 방정식

- 13 직선의 방정식
- 14 좌표축에 평행 또는 수직인 직선의 방정식
- 15 세 점이 한 직선 위에 있을 조건
- 16 도형의 넓이를 이등분하는 직선의 방정식
- 17 일차방정식 ax+by+c=0이 나타내는 도형 **41** 도형의 대칭이동
- 18 두 직선의 위치 관계
- 19 세 직선의 위치 관계
- 20 선분의 수직이등분선의 방정식
- 21 두 직선의 교점을 지나는 직선
- ✓ 22 점과 직선 사이의 거리
 - 23 평행한 두 직선 사이의 거리
 - 24 세 꼭짓점의 좌표가 주어진 삼각형의 넓이
 - 25 점 P가 나타내는 도형의 방정식

3 원의 방정식

- **☆ 26** 원의 방정식
 - **27** x축 또는 y축에 접하는 원의 방정식
 - **28** x축과 y축에 동시에 접하는 원의 방정식
 - **✓ 29** 이차방정식 $x^2+y^2+Ax+By+C=00$ 나타내는 도형
 - 30 그 외의 도형의 방정식
 - 31 원과 직선의 위치 관계
 - 32 현의 길이
 - 33 원의 접선의 길이
 - 34 원 위의 점과 직선 사이의 거리의 최대·최소
 - 35 기울기가 주어진 원의 접선의 방정식
 - 36 원 위의 점에서의 접선의 방정식
 - ☆ 37 원 밖의 한 점이 주어진 접선의 방정식

4 도형의 이동

- 38 점의 평행이동
- √ 39 도형의 평행이동
 - 40 점의 대칭이동

 - 42 도형의 평행이동과 대칭이동
 - 43 점에 대한 대칭이동
 - 44 직선에 대한 점의 대칭이동
 - 45 대칭이동을 이용한 선분의 길이의 합의 최솟값

수능 BASIC ✓ 수능 BEST భ

도형의 방정식

1 평면좌표

두 점 사이의 거리

- 수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 사이의 거리 $\overline{AB} = |x_2 - x_1| = |x_1 - x_2|$
- 좌표평면 위의 두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 사이의 거리

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

선분의 내분점

- 수직선 위의 선분의 내분점
 - 선분 AB를 m: n(m>0, n>0)으로 내분하는 점 P의 좌표: $P(\frac{mx_2+nx_1}{m+n})$
 - 선분 AB의 중점 M의 좌표: $\mathbf{M}\left(\frac{x_1+x_2}{2}\right)$
- 좌표평면 위의 선분의 내분점
 - 선분 AB를 m: n(m>0, n>0)으로 내분하는 점 P의 좌표: $P\Big(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\Big)$
 - 선분 $ext{AB의 중점 M의 좌표: }\mathbf{M}\Big(rac{x_1+x_2}{2}, rac{y_1+y_2}{2}\Big)$

삼각형의 무게중심

세 점 $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ 을 꼭짓점으로 하는 삼각형 ABC의 무게중심 G의 좌표:

$$G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

2 직선의 방정식

직선의 방정식

- **점과 기울기** 점 (x_1, y_1) 을 지나고 기울기가 m인 직선의 방정식: $y-y_1=m(x-x_1)$
- **서로 다른 두 점** $(x_1, y_1), (x_2, y_2)$ 를 지나는 직선의 방정식:

①
$$x_1 \neq x_2$$
일 때, $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}$

②
$$x_1 = x_2$$
일 때, $x = x_1$

• *x***절편**, *y***절편** *x*절편이 *a*, *y*절편이 *b*인 직선의 방정식:

$$\frac{x}{a} + \frac{y}{b} = 1$$
 (단, $a \neq 0$, $b \neq 0$)

일차방정식 ax+by+c=0이 나타내는 도형

 \nearrow x, y에 대한 일차방정식 ax+by+c=0 $(a\neq 0$ 또는 $b\neq 0$) * __ 직선의 방정식 슞

> ★ 중요 대수식으로도 표현할 수 있어야 하고 기하학적 접근도 할 수 있어야 한다.

정점을 지나는 직선의 방정식

두 직선 ax+by+c=0. a'x+b'y+c'=0이 한 점에서 만날 때. 방정식 ax+by+c+k(a'x+b'y+c')=0이 나타내는 도형은 실수 k의 값에 관계없이 두 직선 ax+by+c=0. a'x+b'y+c'=0의 교점을 지나는 직선이다.

평행과 수직

- 두 직선의 방정식이 y=mx+n, y=m'x+n' 꼴일 때
- ① 평행한다. m=m', $n \neq n'$ ② 수직이다. mm'=-1
- 두 직선의 방정식이 ax+by+c=0, a'x+b'y+c'=0 꼴일 때,
 - ① 평행한다. $\frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$ ② 수직이다. aa' + bb' = 0

점과 직선 사이의 거리

- ① 점 $P(x_1, y_1)$ 과 직선 ax+by+c=0 사이의 거리 d: $d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$
- ② 원점과 직선 ax+by+c=0 사이의 거리 d: $d=\frac{|c|}{\sqrt{a^2+b^2}}$

3 원의 방정식

원의 방정식

중심의 좌표가 (a, b)이고, 반지름의 길이가 r인 원: $(x-a)^2+(y-b)^2=r^2$

두 원의 교점을 지나는 도형의 방정식

서로 다른 두 점에서 만나는 두 원 $C: x^2+y^2+ax+by+c=0$, $C': x^2+y^2+a'x+b'y+c'=0$ 에 대하여

- 직선의 방정식
 (a-a')x+(b-b')y+c-c'=0
- 원의 방정식 $x^2+y^2+ax+by+c+k(x^2+y^2+a'x+b'y+c')=0$ $(단. k \ne -1)$

원과 직선의 위치 관계

원과 직선에 대하여 두 방정식을 연립하여 얻은 이차방정식의 판별식을 D, 원의 반지름의 길이를 r, 원의 중심과 직선 사이의 거리를 d라 하면

- D > 0 서로 다른 두 점에서 만난다. $\Leftrightarrow d < r$
- D=0 한 점에서 만난다. (접한다.) $\Leftrightarrow d=r$
- D < 0 만나지 않는다. $\Leftrightarrow d > r$

원의 접선의 방정식

원 $x^2+y^2=r^2$ 에 접하고 기울기가 m 이거나 접점이 (x_1, y_1) 인 접선의 방정식은 다음과 같다.

- 기울기가 주어졌을 때, $y=mx\pm r\sqrt{m^2+1}$
 - 이 공식은 원의 중심이 (0,0)일 때만 사용할 수 있다.
- 접점이 주어졌을 때, $xx_1+yy_1=r^2$

4 도형의 이동

평행이동

x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동시키면

• 점의 평행이동

점 $P(x, y) \longrightarrow A P'(x+a, y+b)$

• 점의 평행이동

도형의 방정식 f(x,y)=0 도형의 방정식 f(x-a,y-b)=0

대칭이동

점의 대칭이동: 점 (x, y)

-x축에 대한 대칭이동 (x, -y)

-y축에 대한 대칭이동 (-x,y)

- 원점에 대한 대칭이동 (-x, -y)

 \Box 직선 y=x에 대한 대칭이동 (y,x)

• 도형의 대칭이동: 도형의 방정식 f(x,y)=0

-x축에 대한 대칭이동 f(x, -y) = 0

-y축에 대한 대칭이동 f(-x,y)=0

- 원점에 대한 대칭이동 f(-x, -y) = 0

 \Box 직선 y=x에 대한 대칭이동 f(y,x)=0

점에 대한 대칭이동

점 P(x, y)를 점 A(a, b)에 대하여 대칭이동한 점을 점 P'이라 하자.

- $\operatorname{AP}(x,y) \to \operatorname{AP}'(2a-x,2b-y)$
- 도형 $f(x,y)=0 \to$ 도형 f(2a-x,2b-y)=0

직선에 대한 대칭이동

점 P(x, y)를 직선 l: ax+by+c=0에 대하여 대칭이동한 점을 P'(x', y')이라 하자.

- 중점 조건 : 선분 PP' 의 중점 $\operatorname{M}\Bigl(\frac{x+x'}{2},\frac{y+y'}{2}\Bigr)$ 이 직선 l 위의 점
- 수직 조건 : 직선 PP'의 기울기와 직선 *l*의 기울기의 고으 __1

$$\frac{y'-y}{r'-r} \times \left(-\frac{a}{b}\right) = -1$$

① 1 수직선 위의 두 점 사이의 거리 ——

(1) $\overline{\mathbf{AB}}$

① 수직선 위의 두 점 $\mathbf{A}(x_1)$, $\mathbf{B}(x_2)$ 사이의 거리

$$A(x_1) \qquad B(x_2)$$

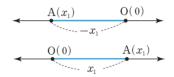
$$x_2-x_1 \qquad B(x_2) \qquad A(x_1)$$

$$x_1-x_2 \qquad A(x_1)$$

- (참고) $|x_2-x_1|=|x_1-x_2|$ 이므로 빼는 순서는 바꾸어도 상관없다.

(2) \overline{OA}

① 수직선 위의 원점 $\mathrm{O}(0)$ 와 점 $\mathrm{A}(x_1)$ 사이의 거리



 $\bigcirc \overline{OA} = |x_1|$

유형 01 수직선 위의 두 점 사이의 거리

[01-04] 두 점 사이의 거리를 구하여라.

01 A(1), B(4)

$$\overline{AB} = |4-1| = \boxed{}$$

02 A(-1), B(3)

03 O(0), A(5)

$$\begin{array}{ccc}
 & O & A \\
 & \bullet & \bullet \\
 & 0 & 5
\end{array}$$

04 A(-2), B(6)

[05-08] 두 점 사이의 거리를 구하여라.

05 A(-3), B(-8)

$$\overline{AB} = |-3 - (\boxed{})| = |-3 + \boxed{}|$$

$$= |\boxed{}| = \boxed{}$$

06 A(-1), B(-7)

07 A(12), B(-10)

08 O(0), A(-9)

[09-12] 두 점 A, B 사이의 거리를 구하여라.

길이는 양수이므로 꼭 절댓값으로 구합니다.

- **09** $A(\sqrt{2}), B(0)$
- **10** A(4), B(-1)
- 11 A(-2), B(5)
- **12** A(-3), B(-7)

유형 02 수직선 위의 두 점 사이의 거리 이용하기

[13-15] 수직선 위의 두 점 사이의 거리가 다음과 같을 때, x의 값을 구하여라.

13 O(0), A(x) [거리:2]

- **14** A(3), B(x) [거리:7]
- **15** A(2), B(x) [거리:5]

- **16** 점 P(4)에서 거리가 3인 점 R
 - 에 점 R의 좌표를 x라 하면 |x-4|=3에서 x-4=3 또는 x-4=-3 $\therefore x=$ 또는 x=1 $\therefore R($) 또는 R(1)
- **17** 점 P(-6)에서 거리가 5인 점 R
- **18** 점 P(1)에서 거리가 3인 점 R
- **19** 점 P(-2)에서 거리가 1인 점 R

20 점 P(-4)에서 거리가 6인 점 R

(개념 체크)

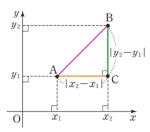
21 다음 빈칸에 알맞은 것을 써넣어라.

[]	ŌĀ
수직선 위의 두 점	수직선 위의 원점
$A(x_1)$, $B(x_2)$	$O(0)$ 와 점 $A(x_1)$
사이의 거리	사이의 거리
AB=[]	ŌĀ=[]

02 좌표평면 위의 두 점 사이의 거리

(1) $\overline{\mathbf{AB}}$

① 좌표평면 위의 두 점 $\mathbf{A}(x_{\!\scriptscriptstyle 1},\,y_{\!\scriptscriptstyle 1}),\,\mathbf{B}(x_{\!\scriptscriptstyle 2},\,y_{\!\scriptscriptstyle 2})$ 사이의 거리

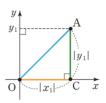


②
$$\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$$

= $|x_2 - x_1|^2 + |y_2 - y_1|^2$
= $(x_2 - x_1)^2 + (y_2 - y_1)^2$

(2) \overline{OA}

① 좌표평면 위의 원점 $\mathrm{O}(0,\,0)$ 와 점 $\mathrm{A}(x_{\!\scriptscriptstyle 1},\,y_{\!\scriptscriptstyle 1})$ 사이의 거리

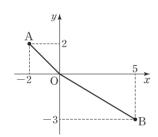


②
$$\overline{OA}^2 = \overline{OC}^2 + \overline{AC}^2$$

= $|x_1|^2 + |y_1|^2$
= $x_1^2 + y_1^2$

유형 03 좌표평면 위의 두 점 사이의 거리

[01-03] 좌표평면을 보고 🗌 안에 알맞은 수를 써넣어라.

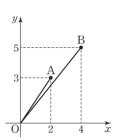


01
$$\overline{OA} = \sqrt{(-2)^2 + 2^2} = \sqrt{(-2)^2 + 2^2}$$

02
$$\overline{OB} = \sqrt{5^2 + (-3)^2} = \boxed{}$$

03
$$\overline{AB} = \sqrt{(-2-5)^2 + (2-(-3))^2} =$$

[04-06] 주어진 선분의 길이를 구하여라.



04
$$\overline{OA} = \sqrt{2^2 + \left(\frac{1}{2} \right)^2} = \sqrt{\frac{1}{2}}$$

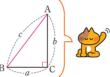
05
$$\overline{OB} = \sqrt{ []^2 + 5^2} = \sqrt{ []}$$

06
$$\overline{AB} = \sqrt{(4-)^2+(-3)^2} =$$

[07-11] 두 점 A, B 사이의 거리를 구하여라.

- **07** A(0, 0), B(1, -3)
- **08** A(0, 0), B(-4, 3)

직각삼각형 ABC에서 직각을 낀 두 변의 길이의 제곱의 합은 빗변의 길이의 제곱과 같다는 피타고라스 정리를 이용한 것이다. → $\alpha^2 + b^2 = c^2$



- **09** A(1, 2), B(-1, 3)
- **10** A(-2, -3), B(1, 2)
- **11** A(1, -2), B(6, 2)

유형 04 좌표평면 위의 두 점 사이의 거리 이용하기

[12-14] 세 점 O, A, B에 대하여 $\overline{OA} = \overline{AB}$ 일 때, a의 값을 구하여라.

12 O(0, 0), A(a, 3), B(2, 4)

4a=

∴ a=

13
$$O(0, 0), A(2, -2), B(a, -1)$$

DAY

01

14
$$O(0, 0), A(-4, 5), B(a, 4)$$

[15-17] 두 점 A, B의 좌표와 \overline{AB} 의 길이가 다음과 같을 때. x의 값을 구하여라.

15 A(-3, 2), B(x, -1),
$$\overline{AB} = \sqrt{73}$$

항
$$\overline{AB} = \sqrt{\{x - (-3)\}^2 + (-1 - 2)^2} =$$

양변을 제곱하면 $(x + y)^2 + 9 = y$
 $x^2 + 6x + 18 - 73 = 0, x^2 + 6x - 55 = 0$
 $(x + y)(x - 5) = 0$
 $\therefore x = y$ 또는 $x = 5$

16 A(1, x), B(-5, 4),
$$\overline{AB} = 6$$

17 A(x, 7), B(0, 0),
$$\overline{AB} = \sqrt{77}$$

(개념 체크)

18 다음 빈칸에 알맞은 것을 써넣어라.

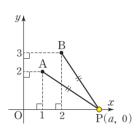
$lue{03}$ 두 점에서 같은 거리에 있는 점 $lue{P}$ 의 좌표

☆ 같은 거리에 있는 점의 좌표를 구하는 순서

- (i) 구하는 점 P의 좌표를 문자를 사용하여 나타낸다.

 - ① x축 위의 점이면 (a, 0) x축 위에 있으니까 y좌표는 무조건 0이다.
 - ② y축 위의 점이면 $(\underbrace{0,\,b})_{y}$ 축 위에 있으니까 x좌표는 무조건 0이다.
 - ③ 직선 y=x 위의 점이면 (a, a)
- (ii) 두 점 사이의 거리를 구하는 공식을 이용하여 \overline{AP} , \overline{BP} 의 길이를 각각 구한다.
- (iii) $\overline{AP} = \overline{BP} \Rightarrow \overline{AP}^2 = \overline{BP}^2$ 을 이용하여 방정식을 세우고, 방정식을 푼다.
- (iv) 점 P의 좌표를 구한다.

(1) 점 P가 x축 위에 있을 때



(i) 점 P의 좌표: (a, 0)

(ii)
$$\overline{AP} = \sqrt{(a-1)^2 + 2^2}$$

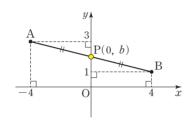
 $\overline{BP} = \sqrt{(a-2)^2 + 3^2}$

(iii)
$$a^2 - 2a + 5 = a^2 - 4a + 13$$

 $2a = 8 \quad \therefore a = 4$

(iv) 점 P의 좌표는 (4.0)

(2) 점 P가 u축 위에 있을 때



(i) 점 P의 좌표: (0, b)

(ii)
$$\overline{AP} = \sqrt{(0+4)^2 + (b-3)^2}$$

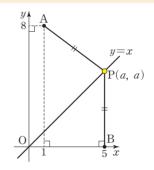
 $\overline{BP} = \sqrt{(0-4)^2 + (b-1)^2}$

(iii)
$$b^2 - 6b + 25 = b^2 - 2b + 17$$

 $4b = 8$ $\therefore b = 2$

(iv) 점 P의 좌표는 (0, 2)

(3) 점 P가 직선 y=x 위에 있을 때



(i) 점 P의 좌표: (a, a)

(ii)
$$\overline{AP} = \sqrt{(a-1)^2 + (a-8)^2}$$

 $\overline{BP} = \sqrt{(a-5)^2 + (a-0)^2}$

(iii)
$$2a^2 - 18a + 65 = 2a^2 - 10a + 25$$

 $8a = 40$ $\therefore a = 5$

(iv) 점 P의 좌표는 (5, 5)

유형 05

두 점에서 같은 거리에 있는 x축 위의 점 P의 좌표

[01-03] 두 점 A. B에서 같은 거리에 있는 x축 위의 점 P의 좌표를 구하여라.

- **01** A(-3, 1), B(2, 4)
 - 테 점 P의 좌표를 (a, 0)으로 놓으면 $\overline{AP} = \sqrt{(a+3)^2 + 1}, \overline{BP} = \sqrt{(a-2)^2 + 16}$ 그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서 $(a+3)^2+1=(a-2)^2+16$ $a^2+6a+10=a^2-4a+20$ 10a =*∴ a*=

따라서 점 P의 좌표는 (0)이다. **02** A(0, 5), B(1, -4)

03 A(-1, 3), B(4, 2)

$\frac{\text{유형 06}}{\text{F}}$ 두 점에서 같은 거리에 있는 y축 위의 점 P의 좌표

[04-06] 두 점 A, B에서 같은 거리에 있는 y축 위의 점 P의 좌표를 구하여라.

04
$$A(-1, -2), B(3, 0)$$

접 P의 좌표를 (
$$b$$
)로 놓으면
$$\overline{AP} = \sqrt{b+2}^2, \overline{BP} = \sqrt{b+2}^2$$
 그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서
$$b^2 + 4b + 5 = 9 + b^2, 4b = b^2$$
 따라서 점 P의 좌표는 (b)이다.

05
$$A(2, -1), B(1, 0)$$

06 A(3, 7), B(5,
$$-3$$
)

$^{ m Rg}$ 07 두 점에서 같은 거리에 있는 직선 l 위의 점 m P의 좌표

 $oxed{[07-11]}$ 두 점 $oxed{A}$, $oxed{B}$ 에서 같은 거리에 있는 직선 $oldsymbol{l}$ 위의 점 $oxed{P}$ 의 좌표를 구하여라.

07 A(
$$-1$$
, 3), B(5 , -1), $l: y=x$

웹 점 P의 좌표를
$$(a,a)$$
로 놓으면
$$\overline{AP} = \sqrt{(a+1)^2 + (a-3)^2},$$

$$\overline{BP} = \sqrt{(a-5)^2 + (a+1)^2}$$
 그런데 $\overline{AP} =$ 이므로 $\overline{AP}^2 =$ 에서
$$2a^2 - 4a + 10 = 2a^2 - 8a + 26$$

$$4a = 16 \qquad \therefore a =$$
 따라서 점 P의 좌표는 (,)이다.

08 A(5, 0), B(
$$-7$$
, -4), $l: y=x$

- 09 A(-1, 0), B(3, 4), l: y=2x웹 점 P의 좌표를 (a, b)로 놓으면
 점 P(a, b)는 직선 y=2x 위에 있으므로 $b=2a\cdots$ ③
 또, $\overline{AP}=\overline{BP}$ 에서 $\overline{AP}^2=\overline{BP}^2$ 이므로 $(a+1)^2+b^2=(a-3)^2+(b-4)^2$ $a^2+2a+1+b^2=a^2-6a+9+b^2-8b+16$ 8a+8b= $\therefore a+b=$ \cdots ⑤
 ①, ©을 연립하여 풀면 a=1, b= 따라서 점 P의 좌표는 $(1, \bigcirc)$
- **10** A(1, -2), B(5, 2), l: y=x+1

11 A(
$$-2$$
, -4), B(3 , -1), $l: y=-x$

(개념 체크)

12 다음 빈칸에 알맞은 것을 써넣어라.

좌표평면 위의 두 점 A, B에서 같은 거리에 있는 점 P의 좌표를 구할 때, 그 위치에 따라 P의 좌표를 다음과 같이 놓는다.

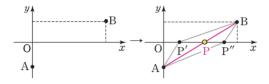
(1) 점 P가 x 축 위에 있을 때: []	
(2) 점 P 가 y 축 위에 있을 때 : []	
(3) 점 P가 직선 $y=x$ 위에 있을 때 : [1

04 두 선분의 길이의 합의 최솟값

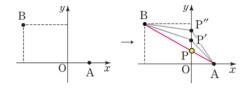
 $oldsymbol{\circ}$ 두 점 $oldsymbol{A}$, $oldsymbol{BP}$ 직선 $oldsymbol{l}$ 위의 임의의 점 $oldsymbol{P}$ 에 대하여 $\overline{oldsymbol{AP}}$ + $\overline{oldsymbol{BP}}$ 의 최솟값

(1) 두 점 A, B가 직선 l에 대하여 서로 반대쪽에 위치할 때

① 직선 *l* 이 *x*축일 때.



② 직선 *l* 이 *y*축일 때.



③ 두 점 A, B를 잇는 직선이 직선 l과 만나는 점을 P라 하면 $\overline{AP} + \overline{PB} \ge \overline{AB}$

④ 최솟값은 \overline{AB}

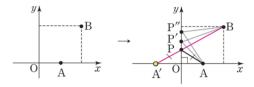
두 선분의 길이의 합 $\overline{AP} + \overline{BP}$ 의 최솟값은 세 점 A, B, P가 일직선 위에 놓일 때를 찾는다.

(2) 두 점 A.B가 직선 l에 대하여 서로 같은 쪽에 위치할 때

① 직선 l이 x축일 때,



② 직선 *l*이 *y*축일 때,



③ 점 A와 직선 l에 대하여 대칭인 점을 A'이라 하면 $\overline{AP} = \overline{A'P}$ 이므로 $\overline{AP} + \overline{PB} = \overline{A'P} + \overline{PB} > \overline{A'B}$

④ 최솟값은 $\overline{{ m A}'{ m B}}$

 \overline{AP} 두 선분의 길이의 합 \overline{AP} + \overline{BP} 의 최솟값은 세 점 A', B, P가 일직선 위에 놓일 때를 찾는다.

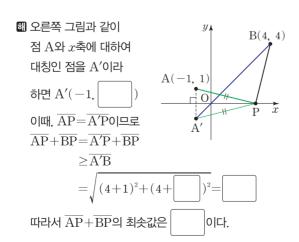
유형 08

점 A를 직선 l에 대하여 대칭시킬 때, 두 선분의 길이의 합의 최솟값

[01-03] 두 점 A, B와 직선 l 위의 임의의 점 P에 대하여 $\overline{AP}+\overline{BP}$ 의 최솟값을 구하여라.

(단, 점 A를 직선 l에 대칭시킨다.)

01 A(-1, 1), B(4, 4), $l: x \triangleq$



02 A(3, 2), B(6, 4), l: x축

03 $A(-2, 1), B(-4, 5), l: x \stackrel{\clubsuit}{\Rightarrow}$

유형 **09**

점 B를 직선 l에 대하여 대칭시킬 때, 두 선분의 길이의 합의 최솟값

 $oxed{[04-07]}$ 두 점 $oxed{A}$, $oxed{B}$ 와 직선 $oldsymbol{l}$ 위의 임의의 점 $oxed{P}$ 에 대하여 $oxed{AP}+oxed{BP}$ 의 최솟값을 구하여라.

(단, 점 B를 직선 l에 대칭시킨다.)

04 A(2, 6), B(9, 3), l:x축

웹 오른쪽 그림과 같이 Y = A(2, 6) 점 B와 $X \stackrel{>}{\Rightarrow} M$ 대하여 대칭인 점을 B'이라 하면 B'(9, 1) 이때, $\overline{BP} = \overline{AP} + \overline{BP} = \overline{AP} + \overline{AP} + \overline{BP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{BP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} + \overline{AP} = \overline{AP} + \overline{AP}$

05 $A(-1, -3), B(2, -7), l: x \stackrel{\clubsuit}{\Rightarrow}$

06 A(-3, 3), B(5, 3), *l*: *x*축

07 A(4, -2), B(1, -6), *l*: *x*축

 $oxed{[08-10]}$ 두 점 $oxed{A}$, $oxed{B}$ 와 직선 $oldsymbol{l}$ 위의 임의의 점 $oxed{P}$ 에 대하여 $oxed{AP}+oxed{BP}$ 의 최솟값을 구하여라.

08 A(5, 1), B(1, 9), l:y축

웹 오른쪽 그림과 같이 점 B와

y축에 대하여 대칭인 점을

B'이라 하면

B'(9)
이때, BP=B'P이므로

ĀP+BP
=ĀP+B'P
≥ĀB'
= √(-5)²+(9-1)²=√

따라서 ĀP+BP의 최솟값은 이다.

09 A(2, 1), B(3, 4), l:y축

10 A(-5, 2), B(-4, -1), l: y축

개념 체크

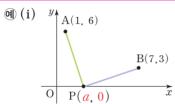
11 다음 빈칸에 알맞은 것을 써넣어라.

두 점 A, B가 직선 l에 대하여 다음과 같이 위치할 때, $\overline{AP} + \overline{BP}$ 의 최솟값을 구하면

- (1) 서로 반대쪽에 위치할 때: [
- (2) 서로 같은 쪽에 위치할 때 : 점 A와 직선 l에 대하여 대칭인 점을 A'이라 하면 [

05 두 선분의 길이의 제곱의 합의 최솟값

- \bigcirc 두 점 A, B와 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값
 - (1) 두 점 A, B와 x축 위의 점 P가 있을 때, $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값
 - (i) 점 P의 좌표를 미지수 *a*를 이용하여 나타낸다.
 - (ii) $\overline{AP}^2 + \overline{BP}^2$ 의 값을 a에 대한 이차식으로 나타낸다.
 - (iii) 이차함수 $y = m(x-p)^2 + q \ (m>0)$ 는 x = p에서 최솟값 q를 가지는 이차함수의 최솟값의 성질을 이용한다.



(ii)
$$\overline{AP}^2 + \overline{BP}^2$$

$$= (a-1)^2 + (0-6)^2 + (a-7)^2 + (0-3)^2$$

$$= (a^2 - 2a + 1 + 36) + (a^2 - 14a + 49 + 9)$$

$$= 2a^2 - 16a + 95$$

$$= 2(a^2 - 8a + 16 - 16) + 95$$

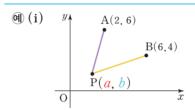
$$= 2(a-4)^2 - 32 + 95$$

$$= 2(a-4)^2 + 63$$

(iii) a=4일 때, 최솟값 63을 갖는다. $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 63이고, P(4,0)

(2) 두 점 A, B와 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값

- (i) 점 P의 좌표를 2개의 미지수 *a*, *b*를 이용하여 나타낸다.
- (ii) $\overline{\rm AP}^2 + \overline{\rm BP}^2$ 의 값을 a, b에 대한 이차식으로 나타내다
- (iii) $(a-p)^2+(b-q)^2+P$ 의 <mark>완전제곱식</mark> 꼴로 나타내어 P(p,q)일 때, 최솟값은 P임을 이용한다.



- (ii) $\overline{AP}^2 + \overline{BP}^2$ $= (a-2)^2 + (b-6)^2 + (a-6)^2 + (b-4)^2$ $= (a^2 - 4a + 4 + b^2 - 12b + 36)$ $+ (a^2 - 12a + 36 + b^2 - 8b + 16)$ $= 2(a^2 - 8a + 16 - 16) + 2(b^2 - 10b + 25 - 25) + 92$ $= 2(a-4)^2 + 2(b-5)^2 - 82 + 92$ $= 2(a-4)^2 + 2(b-5)^2 + 10$
- (iii) a=4, b=5일 때, 최솟값 10을 갖는다. $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 10이고, P(4,5)

유형 10 두 선분의 길이의 제곱의 합의 최솟값

[01-04] 두 점 A, B와 x축 또는 y축 위의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값을 구하여라.

01
$$A(1, -2), B(-4, -1), P(a, 0)$$

③ $\overline{\rm AP}^2+\overline{\rm BP}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표가 (a,0)이므로

$$\frac{\overline{AP}^{2} + \overline{BP}^{2}}{\overline{AP}^{2} + (a-1)^{2} + (0-(-2))^{2}} + (a-(-4))^{2} + (0-(-1))^{2}$$

$$= 2a^{2} + 6a + 22 = 2(a + \boxed{)}^{2} + \boxed{}$$

따라서 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 이다.

02 A(-2, 3), B(-6, 0), P(a, 0)

03 A(-2, 4), B(5, 0), P(0, a)

04 A(6, 7), B(4, -3), P(0, a)

[05-07] 두 점 A, B와 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값을 구하여라

- **05** A(-3, -6), B(2, 5), P(a, b)
 - $\overline{AP}^2 + \overline{BP}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표가 (a, b)이므로

 $\overline{AP}^2 + \overline{BP}^2$

$$= {a-(-3)}^2 + {b-(-6)}^2 + {(a-2)}^2 + {(b-5)}^2$$

= $2a^2 + 2a + 2b^2 + 2b + 74$

$$=2(a+1)^{2}+2(b+1)^{2}+1$$

따라서 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 이다.

06 A(2, -8), B(-2, 4), P(a, b)

07 A(6, -1), B(3, 9), P(a, b)

[08-09] 물음에 답하여라.

- **08** 두 점 A(1, 5), B(5, 3)과 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표를 구하여라
 - $\overline{AP}^2 + \overline{BP}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표를 (a, b)라 하면 $\overline{AP}^2 + \overline{BP}^2$ $=(a-1)^2+(b-5)^2+(a-5)^2+(b-3)^2$ $=2a^2-12a+2b^2-16b+60$ $|)^2 + 10$ =2(a- $)^{2}+2(b$

따라서 a=, b=일 때,

 $\overline{AP}^2 + \overline{BP}^2$ 의 값은 최소가 되므로 점 P의 좌표는

09 두 점 A(-1, 5), B(3, 1)과 y축 위의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최속값을 구하여라

세 선분의 길이의 제곱의 합의 최솟값 유형 11

[10-11] 물음에 답하여라.

- **10** 세 점 A(-1, 2), B(4, 6), C(0, 1)을 꼭짓점으로 하는 삼각형 ABC의 내부에 점 P가 있을 때. $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표를 구하여라.
 - $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표를 (a, b)라 하면 $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ $= (a+1)^2 + (b-2)^2 + (a-4)^2 + (b-6)^2$ $+a^2+(b-1)^2$ $=3a^2-6a+3b^2-18b+58$ =3(a- $|)^2 + 3(b -$ 즉. $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ 은 일 때, 최솟값 을 가진다. 따라서 구하는 점 P의 좌표는 ()이다.
- 꼭짓점으로 하는 삼각형 ABC의 내부에 점 P가 있을 때, $\overline{PA}^2 + \overline{PB}^2 + \overline{PC}^2$ 의 값이 최소가 되도록 하는 점 P의 좌표를 구하여라.

(개념 체크)

- 12 다음 빈칸에 알맞은 것을 써넣어라.
- (1) 두 점 A, B와 x축 위의 점 P가 있을 때. $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 이차함수의 []의 성질을 이용한다.
- (2) 두 점 A, B와 임의의 점 P(a, b)에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 a, b의 [] 꼴로 나타내어 []을 구한다.

❶ੂ 세 변의 길이에 따른 삼각형의 모양 결정하기

- (1) 삼각형 ABC의 모양을 결정하는 순서
 - (i) 삼각형의 세 변의 길이 \overline{AB} , \overline{BC} , \overline{CA} 를 구한다.

두 점 $\mathbf{A}(x_1, y_1)$, $\mathbf{B}(x_2, y_2)$ 사이의 거리는 $\overline{\mathbf{AB}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 임을 이용한다.

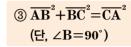
- (ii) 주어진 삼각형의 조건을 만족시키는지 확인하고 삼각형의 모양을 결정한다.
- (2) 삼각형의 종류

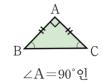
$\bigcirc \overline{AB} = \overline{BC} = \overline{CA}$

정삼각형

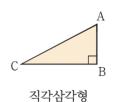
② $\overline{AB} = \overline{AC}$ (또는 $\overline{BC} = \overline{CA}$ 또는 $\overline{AB} = \overline{BC}$)

이등변삼각형





직각이등변삼각형



삼각형의 모양 결정하기 유형 12

[01-04] 세 점 A, B, C를 꼭짓점으로 하는 삼각형 ABC에 대하여 물음에 답하여라.

01

$$A(3, -1), B(1, 1), C(0, 0)$$

- 11 AB의 길이
- 2) BC의 길이
- 31 CA의 길이
- 4) 삼각형 ABC의 모양

02

$$A(-1, 0), B(-3, 0), C(-2, \sqrt{3})$$

- 1) AB의 길이
- 2) BC의 길이
- 3] CA의 길이
- 4) 삼각형 ABC의 모양

03

$$A(-1, -3), B(-3, 1), C(4, 2)$$

- 1] AB의 길이
- 2] BC의 길이
- 3) CA의 길이
- 4] 삼각형 ABC의 모양

04

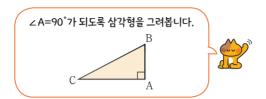
$$A(0, 2), B(-5, -1), C(3, -3)$$

- 1] AB의 길이
- 2) BC의 길이
- 31 CA의 길이
- 4] 삼각형 ABC의 모양

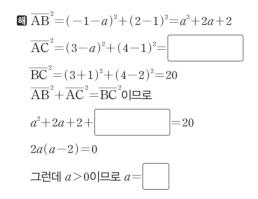
DAY **02**

유형 13 삼각형의 모양을 이용하여 미지수 구하기

[05-07] 세 점 A, B, C를 꼭짓점으로 하는 삼각형 ABC가 $\angle A$ =90°인 직각삼각형일 때, 양수 a의 값을 구하여라.



05 A(a, 1), B(-1, 2), C(3, 4)



06 A(0, a), B(4, 2), C(-2, 0)

07 A(1, -1), B(-1, a), C(5, 3)

[08-09] 세 점 A, B, C를 꼭짓점으로 하는 삼각형 ABC가 정삼각형일 때, x, y의 값을 각각 구하여라.

08 A(1, 2), B(-1, -2), C(x, y)

09 A(0, 0), B(2, 4), C(x, y)

개념 체크

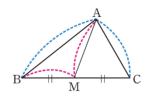
- 10 다음 빈칸에 알맞은 것을 써넣어라.
- (i) 삼각형의 세 변의 길이 AB, BC, CA를 구한다.
- (ii) 주어진 삼각형의 조건을 만족시키는지 확인하고 삼각형의 모양을 결정한다.
 - ① $\overline{AB} = \overline{BC} = \overline{CA}$ 이면 [
 - ② $\overline{AB} = \overline{BC}$ (또는 $\overline{BC} = \overline{CA}$ 또는 $\overline{AB} = \overline{BC}$)이면
 - ③ $\overline{AB}^2 + \overline{BC}^2 = \overline{CA}^2$ (단, ∠B=90°)이면

07 좌표를 이용한 도형의 성질

♥ 중선정리(파포스의 정리)

삼각형 ABC에서 변 BC의 중점을 M이라 할 때, 다음과 같은 등식을 중선정리(파포스의 정리)라 한다.

$$\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$$

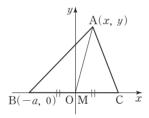


유형 14 좌표를 이용한 도형의 성질

 $m{01}$ 다음은 삼각형 ABC에서 변 BC의 중점을 M이라 할 때, $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$ 임을 보이는 과정이다.

□ 안에 알맞은 것을 써넣어라.

다음 그림과 같이 점 M을 원점 O, \overline{BC} 를 축에 일치하도록 삼각형 ABC를 좌표평면 위에 놓자.



또, 점 B의 좌표를 (-a, 0)이라 하면

점 C의 좌표는 (, 0)이다.

이때, 점 A의 좌표를 (x, y)라 하면

 $\overline{AB}^2 = (x+a)^2 + y^2$

$$\overline{AC}^2 = (x - \overline{)^2 + y^2}$$

$$\overline{AM}^2 = x^2 + y^2$$

$$\overline{\mathrm{BM}}^2 = a^2$$

$$\therefore \overline{AB}^2 + \overline{AC}^2$$

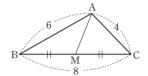
$$=(x+a)^2+y^2+(x-[])^2+y^2$$

$$=2\{(x^2+y^2)+$$

$$=2(\overline{AM}^2+$$

 $oxed{[02-03]}$ 삼각형 $oxed{ABC}$ 에서 점 $oxed{MO}$ 변 $oxed{BC}$ 의 중점일 때, $oxed{\overline{AM}}$ 의 길이를 구하여라.

02



耐 점 M이 변 BC의 중점이므로 중선정리에 의하여

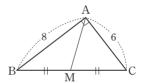
$$\overline{AB}^2 + \overline{AC}^2 = \boxed{(\overline{AM}^2 + \overline{BM}^2)}$$

$$6^2+4^2=$$
 (\overline{AM}^2+4^2)

$$\overline{\mathrm{AM}}^{\scriptscriptstyle 2} =$$

$$\therefore \overline{AM} = \boxed{ (\because \overline{AM} > 0)}$$

03



(개념 체크)

04 다음 빈칸에 알맞은 것을 써넣어라.

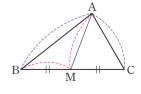
삼각형 ABC에서 변 BC의 중점을 M이라 할 때,

다음과 같은 등식이

성립한다.

$$\overline{AB}^2 + \overline{AC}^2$$

=[



-1

01

정수 x의 개수를 구하여라.

02

 $\sqrt{-2x^2+ax+b}$ 의 값이 실수가 되도록 하는 x의 값의 범위가 $2 \le x \le 5$ 일 때, a+b의 값은? (단. a, b는 상수)

- (1) -10 (2) -9
- (3) 8

- (4) -7 (5) -6

03

$$-2 < x < \frac{3}{2}$$
일 때 $2\sqrt{x^2 + 4x + 4} + \sqrt{4x^2 - 12x + 9}$

를 간단히 하면?

- ① 5 ② 7
- (3)9

- **4** 11 **5** 13

04

$$\frac{x}{\sqrt{2x+1}+\sqrt{x+1}}-\frac{x}{\sqrt{2x+1}-\sqrt{x+1}}$$
를 간단히 하면? $\left(\text{단,}\;x\!>\!-\frac{1}{2}\right)$

- ① $\sqrt{x+1}$ ② $-\sqrt{2x+1}$ ③ $-2\sqrt{x+1}$
- (4) $-2\sqrt{2x+1}$ (5) $2\sqrt{2x+1}$

05

무리식 $\sqrt{3-2x}+\frac{3}{\sqrt{x+3}}$ 의 값이 실수가 되도록 하는 $x=\sqrt{2}$ 일 때, $\frac{\sqrt{x-1}}{\sqrt{x+1}}-\frac{\sqrt{x+1}}{\sqrt{x-1}}$ 의 값을 구하여라.

06

 $x=\sqrt{2}+1, y=\sqrt{2}-1$ 일 때, $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}=a+b\sqrt{2}$ 가 성립한다. 두 유리수 a, b에 대하여 a+b의 값은?

- (1) -2 (2) -1
- ③ 0

- **4** 1 **5** 2

07 계산 조심 ☑

자연수 x에 대하여 $f(x) = \frac{2}{\sqrt{2x+1} + \sqrt{2x-1}}$ 일 때, $f(1)+f(2)+f(3)+\cdots+f(40)$ 의 값을 구하여라.

08

〈보기〉에서 무리함수인 것만을 있는 대로 고른 것은?

	─〈보기〉──
$\neg y = \sqrt{3x}$	\bot . $y = -\sqrt{3}x$
$= \sqrt{(x+2)^2}$	$\exists y = \frac{x}{\sqrt{x+1}}$

- ① 7, L ② 7, E ③ 7, 2
- 4 L, L (5) L, E

41

09

 \langle 보기 \rangle 에서 무리함수 $y=\sqrt{ax}(a\neq 0)$ 의 그래프에 대한 설명으로 옳은 것만을 있는 대로 고른 것은?

-----〈보기〉---

- ¬. *a*>0이면 제 1사분면을 지난다.
- ㄴ. 두 함수 $y=\sqrt{ax}$, $y=\sqrt{-ax}$ 의 그래프는 x축에 대하여 대칭이다
- [a]의 값이 클수록 x축에서 멀어진다
- ① ¬
- ② L
- (3) 7 [

- 4 L, ت 5 ٦, L, ت

10

무리함수 $y = -\sqrt{1-ax} + b$ 의 정의역이 $\left\{x \mid x \leq \frac{1}{3}\right\}$ 일 때, 양수 a의 값은? (단, b는 상수)

- \bigcirc 1
- (2) 2
- (3) 3

- **4** 4
- **⑤** 5

11

무리함수 $y=\sqrt{-6x}$ 의 그래프를 원점에 대하여 대칭이동한 그래프를 나타내는 식을 구하여라.

12

무리함수 $y=\sqrt{2x+a}-2a$ 의 정의역이 $\{x\mid x\geq 3\}$ 일 때. 이 함수의 치역을 구하여라. (단. a는 상수)

13

무리함수 $y=\sqrt{x}$ 의 그래프를 x축의 방향으로 a만큼. y축의 방향으로 b만큼 평행이동하였더니 무리함수 $y=\sqrt{x+3}+8$ 의 그래프와 일치하였다. 두 상수 a, b에 대하여 a+b의 값을 구하여라

14

무리함수 $y=\sqrt{ax}$ 의 그래프를 x축의 방향으로 -2만큼, u축의 방향으로 4만큼 평행이동한 후 원점에 대하여 대칭이동한 그래프는 점 (3, -6)을 지난다고 할 때. 상수 a의 값을 구하여라.

15

 \langle 보기 \rangle 의 함수 중 그 그래프가 무리함수 $y=\sqrt{x}$ 의 그래프를 평행이동하거나 대칭이동하여 겹쳐질 수 있는 것만을 있는 대로 고른 것은?

- ① 7. L
- ② 7. L. E ③ 7. L. E

- ④ ∟. ⊒
- ⑤ ∟ ⊏ ⊒

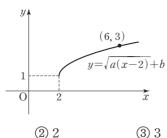
16

무리함수 $y=\sqrt{2x-2}-3$ 의 그래프가 지나는 모든 사분면으로 짝지어진 것은?

- ① 제 1, 2사분면 ② 제 1, 4사분면
- ③ 제 2, 3, 4사분면 ④ 제 1, 3, 4사분면
- ⑤ 제 1, 2, 3, 4사분면

17

무리함수 $y=\sqrt{a(x-2)}+b$ 의 그래프가 다음 그림과 같을 때, 두 상수 a, b에 대하여 a+b의 값은?



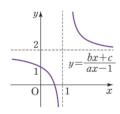
- 1)1
- 2 2
- **4** 4
- (5) 5

18

정의역이 $\{x \mid -5 \le x \le 4\}$ 인 무리함수 $y = \sqrt{-x+4} + 2$ 의 치역이 $\{y \mid a \le y \le b\}$ 일 때. 두 상수 a, b에 대하여 a+b의 값을 구하여라.

19 조건 확인!

유리함수 $y = \frac{bx+c}{ax-1}$ 의 그래프가 다음 그림과 같을 때, 무리함수 $y = \sqrt{ax+b} + c$ 의 그래프가 지나는 사분면을 모두 고르면?



- ① 제 1. 2사분면
- ② 제 3, 4사분면
- ③ 제 1, 2, 3사분면
- ④ 제 1, 2, 4사분면
- ⑤ 제 2, 3, 4사분면

20

무리함수 $f(x) = \sqrt{2x-6} + 1$ 의 그래프와 직선 y=x+k가 접할 때, 실수 k의 값을 구하여라.

21

무리함수 $f(x) = \sqrt{ax+b}$ 의 역함수 $f^{-1}(x)$ 에 대하여 $f^{-1}(2)=1$, $f^{-1}(7)=10$ 이 성립한다. 두 상수 a, b에 대하여 a-b의 값을 구하여라.

22 생각 더하기

두 무리함수

 $y = \sqrt{x+a} + b(x \ge c)$, $y = x^2 - 6x + 5(x \ge 3)$ 의 그래프가 직선 y=x에 대하여 대칭일 때. 상수 a, b, c에 대하여 a+b+c의 값을 구하여라.

23

두 무리함수 $f(x) = \sqrt{3x-2}$. $g(x) = \sqrt{7-3x}$ 에 대하여 $(f^{-1} \circ g)(1)$ 의 값은? (단, f^{-1} 는 f의 역함수)

- ① 1
- \bigcirc 2

- **(4)** 4 **(5)** 5

24

무리함수 $f(x) = -\sqrt{-3x+4} + 2$ 의 역함수를 g(x)라 하자. 함수 y=f(x)의 그래프와 y=g(x)의 그래프의 교점 중 원점이 아닌 점의 좌표는?

- ① (-4, -4) ② (-3, -3) ③ (-2, -2)

- 4(-1,-1) 5(1,1)

Ⅰ -1 평면좌표

01 수직선 위의 두 점 사이의 거리

▶ p.10~11

01 🖺 3

$$\overline{AB} = |4-1| = \boxed{3}$$

02 달 4

$$\overline{AB} = |3 - (-1)| = |3 + 1| = 4$$

03 🗄 5

$$\overline{OA} = |5| = 5$$

04 😫 8

$$\overline{AB} = |6 - (-2)| = |6 + 2| = |8| = 8$$

05 🗄 5

$$\overline{AB} = |-3 - (-8)| = |-3 + 8| = |5| = 5$$

06 🖺 6

$$\overline{AB} = |-1-(-7)| = |-1+7| = |6| = 6$$

07 🖹 22

$$\overline{AB} = |12 - (-10)| = |12 + 10| = |22| = 22$$

08 🖺 9

$$\overline{OA} = |-9| = 9$$

09 $\Box \sqrt{2}$

$$\overline{AB} = |0 - \sqrt{2}| = |-\sqrt{2}| = \sqrt{2}$$

10 🖶 5

$$\overline{AB} = |-1-4| = |-5| = 5$$

11 🔡 7

$$\overline{AB} = |5 - (-2)| = |7| = 7$$

12 🖹 4

$$\overline{AB} = |-7 - (-3)| = |-4| = 4$$

13 🖹 x = -2 또는 x = 2

$$\overline{OA} = ||x|| = 2$$

$$\therefore x = \boxed{-2}$$
 또는 $x = \boxed{2}$

14 달 x=10 또는 x=-4

$$|x-3|=7$$
에서 $x-3=7$ 또는 $x-3=-7$

15 달 x=7 또는 x=-3

|x-2|=5에서 x-2=5 또는 x-2=-5

∴ *x*=7 또는 *x*=-3

16 탑 R(7) 또는 R(1)

점 R의 좌표를 x라 하면

|x-4|=3에서 x-4=3 또는 x-4=-3

∴ *x*=7 또는 *x*=1

∴ R(7) 또는 R(1)

17 탑 R(-1) 또는 R(-11)

점 R의 좌표를 x라 하면

|x-(-6)|=5에서 x+6=5 또는 x+6=-5

∴ x=-1 또는 x=-11

∴ R(-1) 또는 R(-11)

18 🖹 R(4) 또는 R(-2)

점 R의 좌표를 x라 하면

|x-1|=3에서 x-1=3 또는 x-1=-3

∴ x=4 또는 x=-2

∴ R(4) 또는 R(-2)

점 R의 좌표를 x라 하면

|x-(-2)|=1에서 |x+2|=1이므로

x+2=1 $\pm \frac{1}{2}$ x+2=-1

 $\therefore x = -1$ 또는 x = -3

 \therefore R(-1) 또는 R(-3)

20 달 R(2) 또는 R(−10)

점 R의 좌표를 x라 하면

|x-(-4)| = 6에서 |x+4| = 6이므로

x+4=6 또는 x+4=-6

∴ x=2 또는 x=-10

∴ R(2) 또는 R(-10)

21 \Box \overline{AB} , $|x_2-x_1|$, $|x_1|$

02 좌표평면 위의 두 점 사이의 거리

▶ p.12~13

 $01 \ \exists \ 2\sqrt{2}$

$$\overline{OA} = \sqrt{(-2)^2 + 2^2} = \boxed{2\sqrt{2}}$$

02 □ √34

$$\overline{OB} = \sqrt{5^2 + (-3)^2} = \sqrt{34}$$

03 🖹 √74

$$\overline{AB} = \sqrt{(-2-5)^2 + (2-(-3))^2} = \sqrt{74}$$

04 달 √13

$$\overline{OA} = \sqrt{2^2 + [3]^2} = \sqrt{[13]}$$

05 🖶 √41

$$\overline{OB} = \sqrt{4^2 + 5^2} = \sqrt{41}$$

06 달 2√2

$$\overline{AB} = \sqrt{(4-2)^2+(5-3)^2} = 2\sqrt{2}$$

07 🖹 √10

$$\overline{AB} = \sqrt{1^2 + (-3)^2} = \sqrt{10}$$

08 🖺 5

$$\overline{AB} = \sqrt{(-4)^2 + 3^2} = \sqrt{25} = 5$$

09 🖶 √5

$$\overline{AB} = \sqrt{(-1-1)^2 + (3-2)^2} = \sqrt{4+1} = \sqrt{5}$$

10 □ √34

$$\overline{AB} = \sqrt{(1+2)^2 + (2+3)^2} = \sqrt{9+25} = \sqrt{34}$$

11 달 √41

$$\overline{AB} = \sqrt{(6-1)^2 + (2+2)^2} = \sqrt{25+16} = \sqrt{41}$$

12 \Box a=-1

 $\overline{OA} = \overline{AB}$ 에서 $\overline{OA}^2 = \overline{AB}^2$ 이므로

$$a^2+3^2=(2-a)^2+(4-3)^2$$

$$a^2+9=[a^2-4a+5]$$

$$4a = \begin{bmatrix} -4 \end{bmatrix}$$
 $\therefore a = \begin{bmatrix} -1 \end{bmatrix}$

13 \Box $a=2\pm\sqrt{7}$

$$\overline{OA} = \overline{AB}$$
에서 $\overline{OA}^2 = \overline{AB}^2$ 이므로

$$2^{2}+(-2)^{2}=(a-2)^{2}+(-1+2)^{2}$$

- $4+4=a^2-4a+4+1$
- $a^2 4a 3 = 0$: $a = 2 \pm \sqrt{7}$
- **14** \Box $a = -4 \pm 2\sqrt{10}$

 $\overline{OA} = \overline{AB}$ 에서 $\overline{OA}^2 = \overline{AB}^2$ 이므로

$$(-4)^2+5^2=(a+4)^2+(4-5)^2$$

- $41 = a^2 + 8a + 17$, $a^2 + 8a 24 = 0$
- $\therefore a = -4 \pm \sqrt{16 + 24} = -4 \pm 2\sqrt{10}$

15 冒
$$x = -11$$
 또는 $x = 5$

$$\overline{AB} = \sqrt{(x-(-3))^2 + (-1-2)^2} = \sqrt{73}$$

양변을 제곱하면

$$(x+3)^2+9=73$$

$$x^2+6x+18-73=0, x^2+6x-55=0$$

$$(x+11)(x-5)=0$$

∴
$$x=\boxed{-11}$$
 또는 $x=5$

$$\overline{AB} = \sqrt{(-5-1)^2 + (4-x)^2} = 6$$

양변을 제곱하면

$$(x-4)^2+36=36$$

$$(x-4)^2=0$$

 $\therefore x=4$

17 달 $x=-2\sqrt{7}$ 또는 $x=2\sqrt{7}$

$$\overline{AB} = \sqrt{x^2 + 7^2} = \sqrt{77}$$

양변을 제곱하면

$$x^2 + 49 = 77$$

 $x^2 = 28$

$$\therefore x = -2\sqrt{7}$$
 또는 $x = 2\sqrt{7}$

18 \boxminus (1) $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ (2) $\sqrt{x_1^2+y_1^2}$

03 두 점에서 같은 거리에 있는 점 P의 좌표

▶ p.14~15

01 E P(1,0)

점 P의 좌표를 (a, 0)으로 놓으면

$$\overline{AP} = \sqrt{(a+3)^2 + 1}, \overline{BP} = \sqrt{(a-2)^2 + 16}$$

그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서

$$(a+3)^2+1=(a-2)^2+16$$

$$a^2 + 6a + 10 = a^2 - 4a + 20$$

$$10a = \boxed{10}$$
 $\therefore a = \boxed{1}$

따라서 점 P의 좌표는 (1,0)이다.

02 달 P(−4, 0)

점 P의 좌표를 (a, 0)으로 놓으면

$$\overline{AP} = \sqrt{a^2 + 5^2}, \ \overline{BP} = \sqrt{(a-1)^2 + 4^2}$$

그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서

$$a^2+25=a^2-2a+17, 2a=-8$$
 : $a=-4$

 $\therefore P(-4, 0)$

03 E P(1,0)

점 P의 좌표를 (a, 0)으로 놓으면 $\overline{AP} = \sqrt{(a+1)^2 + 3^2}$, $\overline{BP} = \sqrt{(a-4)^2 + 2^2}$ 그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서 $a^2 + 2a + 10 = a^2 - 8a + 20$, 10a = 10 $\therefore a = 1$ $\therefore P(1, 0)$

04 E P(0, 1)

점 P의 좌표를 (0, b)로 놓으면

$$\overline{AP} = \sqrt{\boxed{1} + (b+2)^2}, \overline{BP} = \sqrt{\boxed{9} + b^2}$$

그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서

$$1 + (b+2)^2 = 9 + b^2$$

$$b^2+4b+5=9+b^2$$
, $4b=\boxed{4}$

$$b=1$$

따라서 점 P의 좌표는 (0, 1)이다.

05 \blacksquare P(0, -2)

점 P의 좌표를 (0, b)로 놓으면 $\overline{AP} = \sqrt{2^2 + (b+1)^2}, \ \overline{BP} = \sqrt{1^2 + b^2}$ 그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서 $4 + (b+1)^2 = 1 + b^2$ $b^2 + 2b + 5 = b^2 + 1$ 2b = -4 $\therefore b = -2$ $\therefore P(0, -2)$

06 \bigcirc P(0, $\frac{6}{5}$)

점 P의 좌표를 (0, b)로 놓으면 $\overline{AP} = \sqrt{3^2 + (b-7)^2}, \ \overline{BP} = \sqrt{5^2 + (b+3)^2}$ 그런데 $\overline{AP} = \overline{BP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서 $9 + b^2 - 14b + 49 = 25 + b^2 + 6b + 9, \ 20b = 24$ $\therefore b = \frac{24}{20} = \frac{6}{5}$ $\therefore P\left(0, \frac{6}{5}\right)$

07 E P(4, 4)

점 P의 좌표를 (a, a)로 놓으면 $\overline{AP} = (a+1)^2 + (a-3)^2$, $\overline{BP} = (a-5)^2 + (a+1)^2$ 그런데 $\overline{AP} = \overline{\overline{BP}}$ 이므로 $\overline{AP}^2 = \overline{\overline{BP}}^2$ 에서 $2a^2 - 4a + 10 = 2a^2 - 8a + 26$ 4a = 16 $\therefore a = \boxed{4}$ 따라서 점 P의 좌표는 $(\boxed{4}, \boxed{4})$ 이다.

08
$$\mathbb{P}\left(-\frac{5}{4}, -\frac{5}{4}\right)$$

점 P의 좌표를 (a, a)로 놓으면

$$\overline{AP} = \sqrt{(a-5)^2 + a^2}, \ \overline{BP} = \sqrt{(a+7)^2 + (a+4)^2}$$

그런데
$$\overline{AP} = \overline{BP}$$
이므로 $\overline{AP}^2 = \overline{BP}^2$ 에서

$$2a^2 - 10a + 25 = 2a^2 + 22a + 65$$

$$32a = -40$$
 $\therefore a = -\frac{5}{4}$

$$\therefore P\left(-\frac{5}{4}, -\frac{5}{4}\right)$$

09 E P(1, 2)

점 P의 좌표를 (a, b)로 놓으면 점 $\mathrm{P}(a, b)$ 는 직선 $y{=}2x$ 위에

있으므로
$$b=2a$$
 ··· \bigcirc

또,
$$\overline{AP} = \overline{BP}$$
에서 $\overline{AP}^2 = \overline{BP}^2$ 이므로

$$(a+1)^2+b^2=(a-3)^2+(b-4)^2$$

$$a^2+2a+1+b^2=a^2-6a+9+b^2-8b+16$$

$$8a+8b=24$$
 $\therefore a+b=3$ $\cdots \bigcirc$

 \bigcirc , \bigcirc 을 연립하여 풀면 $a=1, b=\boxed{2}$

따라서 점 P의 좌표는 (1, 2)

[다른 풀이]

직선 y=2x 위의 점 P(a, 2a)라 놓으면 $\overline{AP}=\overline{BP}$ 에서 $\overline{AP}^2=\overline{BP}^2$ 이므로 $(a+1)^2+(2a)^2=(a-3)^2+(2a-4)^2$ $a^2+2a+1+4a^2=a^2-6a+9+4a^2-16a+16$ 24a=24 $\therefore a=1$ $\therefore P(1,2)$

10 E P(1, 2)

점 P의 좌표를 (a, b)로 놓으면 점 P(a, b)는 직선 y=x+1 위에 있으므로 b=a+1 ··· ⑤ 또, $\overline{AP}=\overline{BP}$ 에서 $\overline{AP}^2=\overline{BP}^2$ 이므로 $(a-1)^2+(b+2)^2=(a-5)^2+(b-2)^2$ $a^2-2a+1+b^2+4b+4=a^2-10a+25+b^2-4b+4$ 8a+8b=24 $\therefore a+b=3$ ··· ⑥ ⑤, ⑥을 연립하여 풀면 a=1,b=2 $\therefore P(1,2)$

[다른 풀이]

직선 y=x+1 위의 점 P(a,a+1)이라 놓으면 $\overline{AP}=\overline{BP}$ 에서 $\overline{AP}^2=\overline{BP}^2$ 이므로 $(a-1)^2+(a+1+2)^2=(a-5)^2+(a+1-2)^2$ $(a-1)^2+(a+3)^2=(a-5)^2+(a-1)^2$ $a^2+6a+9=a^2-10a+25$, 16a=16 $\therefore a=1$ $\therefore P(1,2)$

02 a $D(\frac{8}{3}, -\frac{8}{3})$

AD가 ∠A의 이등분선이므로

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

 $\overline{AB} = \sqrt{(1+2)^2 + (-2-2)^2} = \sqrt{25} = 5$

 $\overline{AC} = \sqrt{(6+2)^2 + (-4-2)^2} = \sqrt{100} = 10$

 $\overline{AB}:\overline{AC}=\overline{BD}:\overline{CD}=5:10=1:2$

따라서 점 D는 선분 BC를 1:2로 내분하는 점이므로

 $D\left(\frac{8}{3}, -\frac{8}{3}\right)$

03 \bigcirc $D\left(-\frac{1}{2}, -\frac{3}{2}\right)$

AD가 ∠A의 이등분선이므로

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

 $\overline{AB} = \sqrt{(5-2)^2 + (0+4)^2} = \sqrt{25} = 5$

 $\overline{AC} = \sqrt{(5+7)^2 + (0-5)^2} = \sqrt{169} = 13$

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD} = 5 : 13$

따라서 점 D는 선분 BC를 5:13으로 내분하는 점이므로

 $D\left(-\frac{1}{2}, -\frac{3}{2}\right)$

04 ∃ D(1, −1)

AD가 ∠A의 이등분선이므로

 \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}

 $\overline{AB} = \sqrt{(2-1)^2 + (-1-1)^2} = \sqrt{5}$

 $\overline{AC} = \sqrt{(1-0)^2 + (1+1)^2} = \sqrt{5}$

 $\overline{AB}: \overline{AC} = \overline{BD}: \overline{CD} = 1:1$

따라서 점 D는 선분 BC를 1 : 1로 내분하는 점(중점)이므로

 $D(\frac{2}{2}, \frac{-1-1}{2}), \stackrel{\blacktriangleleft}{=} D(1, -1)$

05 \bigcirc $D(\frac{3}{5}, \frac{2}{5})$

AD가 ∠A의 이등분선이므로

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

 $\overline{AB} = \sqrt{(3-1)^2 + (-2-0)^2} = \sqrt{8} = 2\sqrt{2}$

 $\overline{AC} = \sqrt{(3-0)^2 + (-2-1)^2} = \sqrt{18} = 3\sqrt{2}$

 $\overline{AB}:\overline{AC}=\overline{BD}:\overline{CD}=2:3$

따라서 점 D는 선분 BC를 2:3으로 내분하는 점이므로

$$\mathbf{D}\Big(\frac{2\times 0 + 3\times 1}{2+3},\, \frac{2\times 1 + 3\times 0}{2+3}\Big), \, \stackrel{\mathbf{Z}}{\rightleftharpoons} \, \mathbf{D}\Big(\frac{3}{5},\, \frac{2}{5}\Big)$$

06 \Box $D(\frac{5}{2}, \frac{5}{2})$

AD가 ∠A의 이등분선이므로

 \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}

 $\overline{AB} = \sqrt{(4-0)^2 + (-2-0)^2} = \sqrt{20} = 2\sqrt{5}$

 $\overline{AC} = \sqrt{(10-4)^2 + (10+2)^2} = \sqrt{6^2 + 12^2} = \sqrt{180} = 6\sqrt{5}$

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD} = 1 : 3$

따라서 점 D는 선분 BC를 1:3으로 내분하는 점이므로

 $\mathrm{D}\!\left(\frac{1\!\times\!10\!+\!3\!\times\!0}{1\!+\!3},\,\frac{1\!\times\!10\!+\!3\!\times\!0}{1\!+\!3}\right)\!,\, \stackrel{\mathbf{Z}}{\dashv} \mathrm{D}\!\left(\frac{5}{2},\,\frac{5}{2}\right)$

07 😭 (1) $\overline{\text{CD}}$ (2) D

단원 마무리 평가 [01~12]

▶ 문제편 p.30~33

01 🖹 3

 $\overline{AB} = |x-2| = 5, x-2 = \pm 5$

∴ x=-3 또는 x=7

따라서 모든 x의 값의 합은

-3+7=4

02 🗄 ①

AB=|3-(-1)|=4이므로

 $\overline{AC} = |-1-x| = 4, x+1 = \pm 4$

 $\therefore x = -5$ (∵ 세 점 A, B, C는 서로 다른 세 점이므로)

수력 ÛP

x=3이면 C(3)=B(3)이 되므로 서로 다른 세 점이라는 조건에 맞지 않는다.

03 量 4

 $\overline{\text{AB}} = \sqrt{(1-a)^2 + (3-a-4)^2} = 2\sqrt{3}$ 에서

 $(1-a)^2+(-a-1)^2=12$, $a^2-2a+1+a^2+2a+1=12$

 $2a^2 = 10, a^2 = 5$ $\therefore a = \sqrt{5} (\because a > 0)$

04 目 ①

$$\overline{AB} = \sqrt{(6-a)^2 + (a-4)^2} = \sqrt{a^2 - 12a + 36 + a^2 - 8a + 16}$$

$$= \sqrt{2a^2 - 20a + 52} = \sqrt{2(a^2 - 10a + 25 - 25) + 52}$$

$$= \sqrt{2(a-5)^2 + 2}$$

따라서 선분 AB의 길이의 최솟값은 $\sqrt{2}$ 이다.

05 日 4

 $\overline{AC} = \sqrt{(a-1)^2 + (2-3)^2} = \sqrt{a^2 - 2a + 1 + 1} = \sqrt{a^2 - 2a + 2},$ $\overline{BC} = \sqrt{(a-3)^2 + (2-5)^2} = \sqrt{a^2 - 6a + 9 + 9} = \sqrt{a^2 - 6a + 18}$ 에서 $\overline{AC}^2 = \overline{BC}^2$ 이므로

 $a^2-2a+2=a^2-6a+18, 4a=16$ $\therefore a=4$

06 a 4

 $\overline{AP} = \overline{BP}$ 에서

$$\sqrt{(a-4)^2+(0-1)^2}=\sqrt{(a-2)^2+(0-3)^2}$$

양변을 제곱하여 정리하면

$$a^2 - 8a + 16 + 1 = a^2 - 4a + 4 + 9$$

$$4a=4$$
 $\therefore a=1$

07 🖹 3

점 P의 좌표를 (a, 0)이라 하면 $\overline{\rm AP}{=}\overline{\rm BP}$ 에서 $\overline{\rm AP}^2{=}\overline{\rm BP}^2$ 이므로

$$(a+2)^2+(0+1)^2=(a-2)^2+(0-5)^2$$

$$a^2+4a+4+1=a^2-4a+4+25$$

$$8a=24$$
 $\therefore a=3$ $\therefore P(3,0)$

한편, 점 Q의 좌표를 (0, b)라 하면 $\overline{AQ} = \overline{BQ}$ 에서 $\overline{AQ}^2 = \overline{BQ}^2$ 이므로

$$(0+2)^2+(b+1)^2=(0-2)^2+(b-5)^2$$

$$4+b^2+2b+1=4+b^2-10b+25$$

$$12b = 24$$
 : $b = 2$

$$\therefore Q(0, 2)$$

$$\therefore \overline{PQ} = \sqrt{3^2 + 2^2} = \sqrt{13}$$

08 월 ①

 $\overline{AP} = \overline{BP}$ 에서

$$\sqrt{(a-2)^2+(a-1)^2}=\sqrt{(a+3)^2+(a-4)^2}$$

$$2a^2-6a+4+1=2a^2-2a+9+16$$

$$4a = -20$$
 : $a = -5$

09 😫 ③

점 P(a, b)는 직선 y=-x+2 위에 있으므로

$$b=-a+2$$
 $\therefore a+b=2 \cdots \bigcirc$

또. $\overline{AP} = \overline{BP}$ 이므로

$$\sqrt{(a-2)^2+(b-3)^2}=\sqrt{(a-1)^2+(b-4)^2}$$

양변을 제곱하여 정리하면

$$a^{2}-4a+4+b^{2}-6b+9=a^{2}-2a+1+b^{2}-8b+16$$

$$-2a+2b=4$$
 $\therefore -a+b=2$ \cdots ①

 \bigcirc , \bigcirc 을 연립하여 풀면 a=0, b=2 $\therefore ab=0$

10 🖹 ③

오른쪽 그림과 같이 점 A의

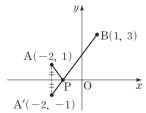
x축에 대한 대칭점은

$$A'(-2,-1)$$
이다.

이때.
$$\overline{AP} = \overline{A'P}$$
이므로

x축 위의 임의의 점 P에 대하여

$$\overline{AP} + \overline{BP} = \overline{A'P} + \overline{BP} \ge \overline{A'B}$$



$$\overline{A'B} = \sqrt{(1+2)^2 + (3+1)^2} = \sqrt{3^2 + 4^2} = 5$$

 $\therefore \overline{AP} + \overline{BP} \ge 5$

따라서 $\overline{AP} + \overline{BP}$ 의 최솟값은 5이다.

11 🖺 13

점 P가 y축 위에 있으므로 점 P의 좌표를 (0, b)로 놓자.

$$\overline{AP}^{2} + \overline{BP}^{2} = (0+2)^{2} + (b-5)^{2} + (0-2)^{2} + (b-1)^{2}$$

$$= 4 + b^{2} - 10b + 25 + 4 + b^{2} - 2b + 1$$

$$= 2b^{2} - 12b + 34 = 2(b^{2} - 6b + 9 - 9) + 34$$

$$= 2(b-3)^{2} + 16$$

이므로 $\overline{\mathrm{AP}}^{^2} + \overline{\mathrm{BP}}^{^2}$ 은 b = 3일 때 최솟값 a = 16을 가진다.

$$a-b=16-3=13$$

12 🖺 30

점 P의 좌표를 (x, y)(x>0, y>0)라 하면

$$\overline{OP}^2 + \overline{AP}^2 + \overline{BP}^2$$

$$=x^2+y^2+(x-6)^2+y^2+x^2+(y-3)^2$$

$$=x^2+y^2+x^2-12x+36+y^2+x^2+y^2-6y+9$$

$$=3x^2-12x+3y^2-6y+45$$

$$=3(x^2-4x+4-4)+3(y^2-2y+1-1)+45$$

$$=3(x-2)^2+3(y-1)^2+30$$

따라서 x=2, y=1일 때, $\overline{OP}^2 + \overline{AP}^2 + \overline{BP}^2$ 의 최솟값은 30

13 🖹 2

삼각형 ABC는 ∠C가 직각인 직각삼각형이므로

$$\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$$
에서

$$\overline{AB}^2 = (2+1)^2 + (-1-3)^2 = 25$$
이고.

$$\overline{AC}^2 + \overline{BC}^2$$

$$=(a+1)^2+(a-3)^2+(a-2)^2+(a+1)^2$$

$$=a^2+2a+1+a^2-6a+9+a^2-4a+4+a^2+2a+1$$

$$=4a^2-6a+15$$

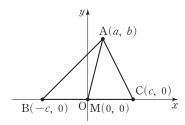
이므로
$$4a^2-6a+15=25$$
에서

$$4a^2-6a-10=0$$
, $2a^2-3a-5=0$...

따라서 모든 a의 값의 합은 이차방정식의 근과 계수의 관계에 의하여 \bigcirc 의 이차방정식의 두 근의 합과 같으므로 $\frac{3}{2}$ 이다.

14 目 ①

그림과 같이 선분 BC를 x축으로 하고 선분 BC의 수직이등분선을 y축으로 잡으면 선분 BC의 중점 M은 원점이 된다.



이때, 세 점 A, B, C의 좌표를 각각

A(a, b), B(-c, 0), C(c, 0)으로 나타낼 수 있다. $\overline{AB}^2 + \overline{AC}^2 = (a+c)^2 + b^2 + (a-c)^2 + b^2$ $= a^2 + 2ac + c^2 + b^2 + a^2 - 2ac + c^2 + b^2$ $= 2(\boxed{a^2 + b^2 + c^2}) \cdots \bigcirc$ $2(\overline{AM}^2 + \overline{BM}^2) = 2\{(a^2 + b^2) + (-c)^2\}$

$$2(AM +BM) = 2\{(a^{2}+b^{3})+(-c)^{3}\}$$
$$= 2(a^{2}+b^{2}+c^{2}) \cdots \bigcirc$$

⊙, ⓒ에 의하여

$$\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$$

15 🖹 🛈

중선정리에 의하여 $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$ $6^2 + 4^2 = 2\{(3\sqrt{2})^2 + \overline{BM}^2\}, 52 = 2(18 + \overline{BM}^2)$ $26 = 18 + \overline{BM}^2$ $\therefore \overline{BM}^2 = 8$ $\therefore \overline{BM} = 2\sqrt{2}$

16 $rac{2\sqrt{2}}{3}$

중선정리에 의하여 $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$

한편,
$$\overline{\mathrm{BM}} = \frac{1}{2}\overline{\mathrm{BC}} = \frac{1}{2} \times 6 = 3$$
이므로

$$3^2 + 5^2 = 2(\overline{AM}^2 + 3^2)$$
, $34 = 2(\overline{AM}^2 + 9)$

$$17 = \overline{AM}^2 + 9 \qquad \therefore \overline{AM}^2 = 8$$

$$\therefore \overline{AM} = 2\sqrt{2}$$

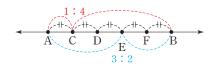
따라서 점 G는 삼각형 ABC의 무게중심이므로

$$\overline{\text{GM}} = \frac{1}{3} \overline{\text{AM}} = \frac{1}{3} \times 2\sqrt{2} = \frac{2\sqrt{2}}{3}$$

17 🖹 2

선분 AB를 1 : 4로 내분하는 점은 점 C.

선분 AB를 3:2로 내분하는 점은 점 E이다.



18 🔡 ③

두 점 A(-2), B(3)에 대하여 선분 AB의 중점이

$$\mathbf{M}(x)$$
이므로 $x = \frac{-2+3}{2} = \frac{1}{2}$

19 🖺 3

두 점 A(4), B(x)에 대하여 선분 AB를 2 : 3으로 내분하는 점이 C(2)이므로

$$\frac{2 \times x + 3 \times 4}{2 + 3} = 2$$
에서 $\frac{2x + 12}{5} = 2$

$$2x+12=10$$
에서 $2x=-2$

$$\therefore x = -1$$

20 $rac{3}{4}$

두 점 A(-4), B(10)에 대하여 점 P(2)는 선분 AB를 m:n으로 내분하는 점이므로

$$2=rac{m imes 10+n imes (-4)}{m+n}$$
에서 $2=rac{10m-4n}{m+n}$

2m+2n=10m-4n

$$8m=6n$$
 $\therefore \frac{m}{n}=\frac{3}{4}$

21 🖹 2

두 점 A(1,6), B(-2,1)에 대하여 \overline{AB} 를 3:1로 내분하는 점이 P(a,b)이므로

$$a = \frac{3 \times (-2) + 1 \times 1}{3 + 1} = -\frac{5}{4}, \ b = \frac{3 \times 1 + 1 \times 6}{3 + 1} = \frac{9}{4}$$

$$\therefore a+b=-\frac{5}{4}+\frac{9}{4}=\frac{4}{4}=1$$

22 🗄 ③

두 점 A(-1, a), B(b, 3a)의 중점의 좌표는

$$\left(\frac{-1+b}{2}, \frac{4a}{2}\right) = (2, 8)$$

$$-1+b=4$$
 : $b=5$

$$4a = 16$$
 $\therefore a = 4$ $\therefore a + b = 4 + 5 = 9$

23 🖹 ③

두 점 $\mathrm{B}(3,\,2),\,\mathrm{A}(a,\,6)$ 에 대하여 선분 BA 를 3:1로 내분하는

점 P의 좌표는
$$\left(\frac{3\times a+1\times 3}{3+1}, \frac{3\times 6+1\times 2}{3+1}\right)$$
= $(0, b)$

$$\frac{3a+3}{4}$$
 = 0, $3a+3$ = 0 : $a=-1$

$$\frac{18+2}{4} = b, \frac{20}{4} = b \qquad \therefore b = 5$$

$$a+b=-1+5=4$$

24 ₽ 2√5

B(5, -2), A(-1, 1)에 대하여 선분 BA를 1:2로 내분하는 점 E의 좌표를 (x, y)라 하면

$$x = \frac{1 \times (-1) + 2 \times 5}{1 + 2} = \frac{-1 + 10}{3} = \frac{9}{3} = 3,$$

$$y = \frac{1 \times 1 + 2 \times (-2)}{1 + 2} = \frac{1 - 4}{3} = \frac{-3}{3} = -1$$

이므로 E(3, -1)

따라서 C(1, 3)이므로

$$\overline{\text{CE}} = \sqrt{(3-1)^2 + (-1-3)^2} = \sqrt{2^2 + (-4)^2} = \sqrt{20} = 2\sqrt{5}$$

25 🖹 ③

두 점 A(-2,3), B(2,-1)에 대하여 선분 AB를 m:n으로 내분하는 점 P의 y좌표가 0이므로

$$\frac{m \times (-1) + n \times 3}{m+n} = 0, m = 3n \qquad \therefore m : n = 3 : 1$$

따라서 점 P의
$$x$$
좌표는 $x=\frac{3\times2+1\times(-2)}{3+1}=\frac{4}{4}=1$